C. Waterlot et al./Chemical Papers 65 (6) 873–882 (2011)
881
dav, 1990; Pai et al., 1997; Rhodes et al., 1991), re-
duction of the catalyst activity can be attributed to
the counter ion of the acid (Chouday at al., 1991; Van-
den Eynde at al., 1995). Poisoning mechanism of the
clayzic catalyst was also shown to be due to HCl for-
mation during the Friedel–Crafts benzylation. How-
ever, from this comparative study of the benzylation
using chloride or bromide derivatives, poisoning effect
of the bromine anion cannot be excluded.
Choudhary, V. R., & Jha, R. (2008). GaAlClx-grafted Mont.K10
clay: Highly active and stable solid catalyst for the Friedel-
Crafts type benzylation and acylation reactions. Catalysis
Communications, 9, 1101–1105. DOI: 10.1016/j.catcom.2007.
10.014.
Choudhary, V. R., & Mantri, K. (2002). Thermal activation
of a clayzic catalyst useful for Friedel–Crafts reactions: HCl
evolved with creation of active sites in different thermal treat-
ments to ZnCl2/Mont-K10. Catalysis Letters, 81, 163–168.
DOI: 10.1023/A:1016564603798.
Clark, J. H. (1994). Catalysis of organic reactions by supported
inorganic reagents (pp. 126). New York, NY, USA: Wiley.
Clark, J. H., Cullen, S. R., Barlow, S. J., & Bastok, T.
W. (1994). Environmentally friendly chemistry using sup-
ported reagent catalysts: structure–property relationships for
clayzic. Journal of the Chemical Society, Perkin Transac-
tions, 2, 1117–1130. DOI: 10.1039/P29940001117.
Conclusions
This study allows a better understanding of the
role of clayzic as the catalyst in comparison with
ZnCl2 in the course of the 1,4-dimethoxybenzene ben-
zylation with aryl halides. Using density functional
theory calculations it was shown that the higher per-
centage of 4-chlorobenzyl chloride conversion, com-
pared to that of 4-bromobenzyl bromine, was due to
the high stability of the transition states of chloride,
and smaller covalent radius of Cl compared to that of
Br. Thus, the mechanism related to the poisoning of
clayzic due to the release of HCl led to total conversion
of aryl bromide prior to aryl chloride.
Clark, J. H., Kybett, A. P., & Macquarrie, D. J. (1992). Sup-
ported reagents: Preparation, analysis and applications (pp.
1
52). New York, NY, USA: Wiley.
Clark, J. H., Kybett, A. P., Macquarrie, D. J., Barlow, S. J.,
Landon, P. (1989). Montmorillonite supported transition
&
metal salts as Friedel–Crafts alkylation catalysts. Journal of
the Chemical Society, Chemical Communications, 18, 1353–
1354. DOI: 10.1039/C39890001353.
Clark, J. H., & Macquarrie, D. J. (1996). Environmentally
friendly catalytic methods. Chemical Society Reviews, 25,
303–310. DOI: 10.1039/CS9962500303.
Cornélis, A., Dony, C., Laszlo, P., & Nsunda, K. M. (1991a).
Inversion of the relative reactivities of mesitylene and toluene
in clay-catalyzed Friedel-Crafts alkylations. Tetrahedron Let-
ters, 32, 2901–2902. DOI: 10.1016/0040-4039(91)80643-K.
Cornélis, A., Dony, C., Laszlo, P., & Nsunda, K. M. (1991b).
Synergistic acceleration of reactions having clay-based cat-
alysts. Tetrahedron Letters, 32, 1423–1424. DOI: 10.1016/
References
Ahmed, O. S., & Dutta, D. K. (2005). Friedel-Crafts benzylation
of benzene using Zn and Cd ions exchanged clay composites.
Journal of Molecular Catalysis A: Chemical, 229, 227–231.
DOI: 10.1016/j.molcata.2004.11.021.
0040-4039(91)80347-9.
Bachari, K., & Cherifi, O. (2007). Benzylation of aromatics on
tin-containing mesoporous materials. Applied Catalysis A:
General, 319, 259–266. DOI: 10.1016/j.apcata.2006.12.010.
Barlow, S. J., Bastock, T. W., Clark, J. H., & Cullen, S. R.
Cornélis, A., Laszlo, P., & Wang, S. (1993). On the tran-
sition state for “clayzic”-catalyzed Friedel-Crafts reactions
upon anisole. Tetrahedron Letters, 34, 3849–3852. DOI:
10.1016/S0040-4039(00)79244-6.
(
1993). Explanation of an unusual substituent effect in the
Cseri, T., Békássy, S., Figueras, F., & Rizner, S. (1995). Benzy-
lation of aromatics on ion-exchanged clays. Journal of Molec-
ular Catalysis A: Chemical, 98, 101–107. DOI: 10.1016/1381-
1169(95)00016-X.
benzylation of anisole and identification of the origin of the
active site in Clayzic. Tetrahedron Letters, 34, 3339–3342.
DOI: 10.1016/S0040-4039(00)73698-7.
Bidart, A. M. F., Borges, A. P. S., Chagas, H. C., Nogueira,
L., Lachter, E. R., & Mota, C. J. A. (2006). Mechanistic
aspects of Friedel-Crafts alkylation over FeY zeolite. Jour-
nal of the Brazilian Chemical Society, 17, 758–762. DOI:
Dewar, M. J. S., Zoebish, E. G., Healy, E. F., & Stewart, J. J.
P. (1985). AM1: A new general purpose quantum mechan-
ical molecular model. Journal of the American Chemistry
Society, 107, 3902–3909. DOI: 10.1021/ja00299a024.
Friesner, R. A. (1991). New methods for electronic structure
calculations on large molecules. Annual Review of Physical
Chemistry, 42, 341–367. DOI: 10.1146/annurev.pc.42.100191.
10.1590/S0103-50532006000400018.
Carey, F. A., & Tremper, H. S. (1968). Carbonium ion-silane hy-
dride transfer reactions. I. Scope and stereochemistry. Jour-
nal of the American Chemistry Society, 90, 2578–2583. DOI:
002013.
Gribble, G. W., Leese, R. M., & Evans, B. E. (1977). Reactions
of sodium borohydride in acidic media; IV. Reduction of di-
arylmethanols and triarylmethanols in trifluoroacetic acid.
Synthesis, 3, 172–176. DOI: 10.1055/s-1977-24308.
Koltunov, K. Y., Walspurger, S., & Sommer, J. (2004). Super-
electrophilic activation of polyfunctional organic compounds
using zeolites and other solid acids. Chemical Communica-
tions, 15, 1754–1755. DOI: 10.1039/B404074K.
10.1021/ja01012a023.
Chouday, B. M., Vally, V. L. K., & Durga Prasad, A. (1991).
A novel montmorillonite – KMnO4 system for the oxidation
of alkenes under triphase conditions. Synthetic Communica-
tions, 21, 2007–2013. DOI: 10.1080/00397919108019806.
Choudhary, V. R., & Jana, S. K. (2002). Benzylation of ben-
zene and substituted benzenes by benzyl chloride over InCl3,
GaCl3, FeCl3 and ZnCl2 supported on clays and Si-MCM-41.
Journal of Molecular Catalysis A: Chemical, 180, 267–276.
DOI: 10.1016/S1381-1169(01)00447-2.
Choudhary, V. R., & Jana, S. K. (2001). Highly active and
low moisture sensitive supported thallium oxide catalysts
for Friedel–Crafts type benzylation and acylation reac-
tions: Strong thallium oxide–support interactions. Journal
of Catalysis, 201, 225–235. DOI: 10.1006/jcat.2001.3245.
Laszlo, P. (1987). Chemical reactions on clays. Science, 235,
1
473–1477. DOI: 10.1126/science.235.4795.1473.
Laszlo, P., & Mathy, A. (1987). Catalysis of Friedel-Crafts
alkylation by montmorillonite doped with transition-
a
metal cations. Helvetica Chimica Acta, 70, 577–586. DOI:
10.1002/hlca.19870700310.
Miller, J. M., Wails, D., Hartman, J. S., & Belelie, J. L. (1997).
Friedel–Crafts catalysis using supported reagents. Synthesis,