Journal of the American Chemical Society
Communication
(6) Liu, Y.; Tu, D.; Zhu, H.; Chen, X. Y. Chem. Soc. Rev. 2013, 42,
6924.
(7) (a) Yang, Y.; Shao, Q.; Deng, R.; Wang, C.; Teng, X.; Cheng, K.;
Cheng, Z.; Huang, L.; Liu, Z.; Liu, X.; Xing, B. Angew. Chem., Int. Ed.
2012, 51, 3125. (b) Wang, F.; Liu, X. J. Am. Chem. Soc. 2008, 130,
5642.
(8) (a) Yan, B.; Boyer, J. C.; Branda, N. R.; Zhao, Y. J. Am. Chem. Soc.
2011, 133, 19714. (b) Esipova, T. V.; Ye, X.; Collins, J. E.; Sakadzic, S.;
Mandeville, E. T.; Murray, C. B.; Vinogradov, S. A. Proc. Natl. Acad.
Sci. U.S.A. 2012, 109, 20826. (c) Deng, R.; Xie, X.; Vendrell, M.;
Chang, C.-T.; Liu, X. J. Am. Chem. Soc. 2011, 133, 20168. (d) Liu, Q.;
Sun, Y.; Yang, T.; Feng, W.; Li, C.; Li, F. J. Am. Chem. Soc. 2011, 133,
17122. (e) Liu, J.; Bu, W.; Pan, L.; Shi, J. Angew. Chem., Int. Ed. 2013,
52, 4375. (f) Zhang, F.; Braun, G. B.; Pallaoro, A.; Zhang, Y.; Shi, Y.;
Cui, D.; Moskovits, M.; Zhao, D.; Stucky, G. D. Nano Lett. 2012, 12,
61. (g) Cheng, L.; Yang, K.; Li, Y.; Chen, J.; Wang, C.; Shao, M.; Lee,
S.-T.; Liu, Z. Angew. Chem., Int. Ed. 2011, 123, 7523. (h) Jayakumar,
M. K.; Idris, N. M.; Zhang, Y. Proc. Natl. Acad. Sci. U.S.A. 2012, 109,
8483.
(9) (a) Li, M.; Liu, Z.; Ren, J.; Qu, X. Chem. Sci. 2012, 3, 868.
(b) Shao, Q.; Xing, B. Chem. Soc. Rev. 2010, 39, 2835.
(10) Ruoslahti, E.; Pierschbacher, M. D. Science 1987, 238, 491.
(11) Liang, X.; Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. Adv. Funct.
Mater. 2007, 17, 2757.
(12) Wang, M.; Mi, C. C.; Wang, W. X.; Liu, C. H.; Wu, Y. F.; Xu, Z.
R.; Mao, B.; Xu, S. K. ACS Nano 2009, 3, 1580.
(13) Chen, C.; Pu, F.; Huang, Z.; Liu, Z.; Ren, J.; Qu, X. Nucl. Acids.
Res. 2011, 39, 1638.
came to UV light, direct exposure to the light sources without
the pork tissue resulted in a more efficient cell release than
using NIR laser. However, the cell release was dramatically
reduced to 35% when the UV light was blocked by 2 mm tissue,
and only 10% was detectable once the light was blocked by 4
mm tissue (Figure 3g). The result was consistent with the
absorbance difference of the tissue in UV and NIR region
(Figure S14) and showed that the UCNP-based NIR light
system offers significantly improved penetration depth and is
preferred for the control of cell adhesion in deep tissue.
In summary, a new paradigm for NIR-controlled cell
adhesion has been presented by using UCNPs acting as the
nanotransducers. UCNPs can harvest NIR light and convert it
into local UV light for cleavage of photocaged linker, thereby
realizing on-demand cell release. This has been demonstrated
in deep tissue penetration. To the best of our knowledge, this is
the first example of using UCNPs to control cell adhesion, and
rapid developments for UCNPs will further improve the
performance of this platform, such as the use of a new kind of
UCNP which can be irradiated with more suitable NIR light.
Therefore, our work will facilitate the design of UCNP-based
multifunctional cell scaffold for dynamic study of biological
process, regeneration medicine, and disease-related cell
isolation and analysis.
ASSOCIATED CONTENT
* Supporting Information
Additional experimental details. This material is available free of
■
(14) (a) Xie, X.; Gao, N.; Deng, R.; Sun, Q.; Xu, Q.; Liu, X. J. Am.
Chem. Soc. 2013, 135, 12608. (b) Wang, Y.; Liu, G.; Sun, L.; Xiao, J.;
Zhou, J.; Yan, C. ACS Nano 2013, 7, 7200.
(15) (a) Wang, C.; Tao, H.; Cheng, L.; Liu, Z. Biomaterials 2011, 32,
6145. (b) Chen, G.; Shen, J.; Ohulchanskyy, T. Y.; Patel, N. J.;
Kutikov, A.; Li, Z.; Song, J.; Pandey, R. K.; Agren, H.; Prasad, P. N.;
Han, G. ACS Nano 2012, 6, 8280.
S
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by 973 Project (2011CB936004,
2012CB720602) and NSFC (21210002, 91213302).
■
REFERENCES
■
(1) (a) Guillame-Gentil, O.; Semenov, O.; Roca, A. S.; Groth, T.;
Zahn, R.; Voros, J.; Zenobi-Wong, M. Adv. Mater. 2010, 22, 5443.
(b) Mrksich, M. Chem. Soc. Rev. 2000, 29, 267.
(2) (a) Mendes, P. M. Chem. Soc. Rev. 2008, 37, 2512. (b) Place, E.
S.; Evans, N. D.; Stevens, M. M. Nat. Mater. 2009, 8, 457. (c) Robertus,
J.; Browne, W. R.; Feringa, B. L. Chem. Soc. Rev. 2010, 39, 354.
(3) (a) Lamb, B. M.; Yousaf, M. N. J. Am. Chem. Soc. 2011, 133,
8870. (b) Ng, C. C. A.; Magenau, A.; Ngalim, S. H.; Ciampi, S.;
hockalingham, M.; Harper, J. B.; Gaus, K.; Gooding, J. J. Angew. Chem.,
Int. Ed. 2012, 51, 7706. (c) Auernheimer, J.; Dahmen, C.; Hersel, U.;
Bausch, A.; Kessler, H. J. Am. Chem. Soc. 2005, 127, 16107. (d) Liu, D.
B.; Xie, Y. Y.; Shao, H. W.; Jiang, X. Y. Angew. Chem., Int. Ed. 2009, 48,
4406. (e) Wirkner, M.; Alonso, J. M.; Maus, V.; Salierno, M.; Lee, T.
T.; Garcia, A. J.; del Campo, A. Adv. Mater. 2011, 23, 3907.
(f) Iwanaga, S.; Akiyama, Y.; Kikuchi, A.; Yamato, M.; Sakai, K.;
Okano, T. Biomaterials 2005, 26, 5395. (g) Liu, H. L.; Li, Y. Y.; Sun,
K.; Fan, J. B.; Zhang, P. C.; Meng, J. X.; Wang, S. T.; Jiang, L. J. Am.
Chem. Soc. 2013, 135, 7603. (h) Stevens, M. M.; George, J. H. Science
2005, 310, 1135.
(4) (a) Weissleder, R. Nat. Biotechnol. 2001, 19, 316. (b) Li, W.;
Wang, J.; Ren, J.; Qu, X. Adv. Mater. 2013, 25, 6737.
(5) Li, W.; Wang, J.; Ren, J.; Qu, X. Angew. Chem., Int. Ed. 2013, 52,
6726.
2251
dx.doi.org/10.1021/ja412364m | J. Am. Chem. Soc. 2014, 136, 2248−2251