10.1002/ejoc.201700745
European Journal of Organic Chemistry
COMMUNICATION
in vials by a fraction collector, and the yields of product 3 were
Hessel, A. Renken, J. C. Schouten, J. Yoshida, Micro Process
Engineering, Wiley-VCH, Weinheim, 2009; c) H. P. L. Gemoets, Y. Su,
M. Shang, V. Hessel, R. Luque, T. Noel, Chem. Soc. Rev. 2016, 45, 83;
d) R. Karande, A. Schmid, K. Buehler, Org. Process Res. Dev. 2016,
20, 361; e) B. Gutmann, D. Cantillo, C. O. Kappe, Angew. Chem. 2015,
127, 6788; Angew. Chem. Int. Ed. 2015, 54, 6688; f) T. Fukuyama, T.
Totoki, I. Ryu, Green Chem. 2014, 16, 2042; g) D. T. McQuade, P. H.
Seeberger, J. Org. Chem. 2013, 78, 6384; h) S. V. Ley, Chem. Rec.
2012, 12, 378; i) J. Wegner, S. Ceylan, A. Kirschning, Chem. Commun.
2011, 47, 4583; j) R. L. Hartman, J. P. McMullen, K. F. Jensen, Angew.
Chem. 2011, 123, 7642; Angew. Chem. Int. Ed. 2011, 50, 7502; k) D.
Webb, T. F. Jamison, Chem. Sci. 2010, 1, 675; l) T. Fukuyama, M. T.
Rahman, M. Sato, I. Ryu, Synlett 2008, 151; m) B. P. Mason, K. E.
Price, J. L. Steinbacher, A. R. Bogdan, D. T. McQuade, Chem. Rev.
2007, 107, 2300.
determined by HPLC analysis.
Continuous one-flow synthesis of PCBM (3): A 243 mL 1,2,4-
trimethylbenzene solution of C60 (3.7 mmol, 2.6 g, 15.1 mM) and a 275
mL 1,2,4-trimethylbenzene solution of diazo-alkane 1 (12.2 mM, 0.8
equiv) were prepared and placed in bottles respectively. These two
bottles were connected by PTFE tube to the HPLC pumps of the
automated microflow system, MiChS® system X-1, equipped with a
MiChS DH as a micromixer, a residence time unit (Inner volume: 1.65 mL,
1 mm i.d., length: 210 cm, 25 °C), MiChS L-1 as a flow photo-reactor
(inner volume 3 mL, width 2 mm, length: 3 m, depth 0.5 mm, quartz, 55
°C), which was irradiated with Na lamp (589 nm, 360 W), a back-
pressure regulator (20 psi), and an automated fraction collector. A 1,2,4-
trimethylbenzene solution of C60 (0.96 mL/min) and
a
1,2,4-
[7]
[8]
[9]
H. Seyler, W. W. H. Wong, D. J. Jones, A. B. Holmes, J. Org. Chem.
2011, 76, 3551.
trimethylbenzene solution of 1 (0.96 mL/min) were mixed using MiChS
DH mixer at 25 °C, and the resultant mixture was guided to the residence
time unit (residence time, 52 sec). The reaction mixture was then passed
through the flow photo-reactor (MiChS L-1, 55 °C, residence time, 95
sec) under Na lamp irradiation (589 nm, 360 W) in the presence of
unconverted C60. The reaction mixture was collected during 3.3 h and the
evaporation of the solvent gave a crude reaction mixture, which was
purified by column chromatography on SiO2 to give PCBM (3: 0.79 g,
37% yield).
E. Rossi, T. Carofiglio, A. Venturi, A. Ndobe, M. Muccini, M. Maggini,
Energy Environ. Sci. 2011, 4, 725.
For reviews on photoreaction using flow microreactors, see: a) D.
Cambie, C. Bottecchia, N. J. W. Staathof, V. Hessel, T. Noel, Chem.
Rev. 2016, 116, 10276; b) K. Mizuno, Y. Nishiyama, T. Ogaki, K. Terao,
H. Ikeda, K. Kakiuchi, J. Photochem. Photobiol. C. Photochem. Rev.
2016, 29, 107; c) M. Oelgemöller, Chem. Eng. Technol. 2012, 35, 114;
d) Y. Matsushita, T. Ichimura, N. Ohba, S. Kumada, K. Sakeda, T.
Suzuki, H. Tanibata, T. Murata, Pure Appl. Chem. 2007, 79, 195
[10] For our work on photoreactions using microreactor, see: a) S. Inuki, K.
Sato, T. Fukuyama, I. Ryu, Y. Fujimoto, J. Org. Chem. 2017, 82, 1248;
b) T. Fukuyama, Y. Fujita, M. A. Rashid, I. Ryu, Org. Lett. 2016, 18,
5444; c) T. Fukuyama, M. Tokizane, A. Matsui, I. Ryu, React. Chem.
Eng. 2016, 1, 613; d) Y. Manabe, Y. Kitawaki, M. Nagasaki, K. Fukase,
H. Matsubara, Y. Hino, T. Fukuyama, I. Ryu, Chem. Eur. J. 2014, 20,
12750; e) T. Fukuyama, Y. Kajihara, Y. Hino, I. Ryu, J. Flow Chem.
2011, 1, 40; f) H. Matsubara, Y. Hino, M. Tokizane, I. Ryu, Chem. Eng.
J. 2011, 167, 567; g) K. Tsutsumi, K. Terao, H. Yamaguchi, S.
Yoshimura, T. Morimoto, K. Kakiuchi, T. Fukuyama, I. Ryu, Chem. Lett.
2010, 39, 828; h) A. Sugimoto, T. Fukuyama, Y. Sumino, M. Takagi, I.
Ryu, Tetrahedron 2009, 65, 1593; i) A. Sugimoto, T. Fukuyama, Y.
Sumino, M. Takagi, I. Ryu, Tetrahedron Lett. 2006, 47, 1593; j) T.
Fukuyama, Y. Hino, N. Kamata, I. Ryu, Chem. Lett. 2004, 33, 1430.
[11] Recently, synthesis of PCBM using one-flow system comprising
thermal flow reactor (30 °C) and a photo flow reactor equipped with the
fluorescent lamp was disclosed (total residence time: 27.5 min). see: T.
Iwai, J. Murata, T. Iwasawa, F. Matsumoto, K. Moriwaki, Y. Takao, T.
Ito, T. Mizuno, T. Ohno, Abstracts of Papers, the 95th Annual Meeting
of the Chemical Society of Japan, Chiba, 2015, 1PA-055.
Acknowledgements
This work was supported by Grants-in-Aid for Scientific
Research (A) (26248031) from JSPS and Scientific Research on
Innovative Areas 2707 Middle Molecular Strategy (15H05850)
from MEXT.
Keywords: Flow synthesis • PCBM • Isomerization • Photo-
reactor • Na lamp
[1]
For recent reviews, see: a) F. Giacalone, N. Martín, Adv. Mater. 2010,
22, 4220; b) J. Roncali, Acc. Chem. Res. 2009, 42, 1719; c) J. Chen, Y.
Cao, Acc. Chem. Res. 2009, 42, 1709; d) Y. Matsuo, E. Nakamura,
Chem. Rev. 2008, 108, 3016; e) N. Martín, Chem. Commun. 2006,
2093; f) N. Martín, M. Altable, S. Filippone, A. Martín-Domenech,
Synlett 2007, 3077; g) E. Nakamura, H. Isobe, Acc. Chem. Res. 2003,
36, 807.
[2]
Cyclobutane- and cyclopentane-annulated fullerenes also have
attracted considerable attention as a material for organic photovoltaics.
Recently, we found that the cyclobutane-annulated fullerene derivatives
have high-lying LUMO levels, which gave a high open-circuit voltage
compared with the PCBM-based devices in organic solar cell
applications. see: M. Ueda, T. Sakaguchi, M. Hayama, T. Nakagawa, Y.
Matsuo, A. Munechika, S. Yoshida, H. Yasuda, I. Ryu, Chem. Commun.
2016, 52, 13175.
[12] In reference 3, the reaction of 1 with C60 for 24 h gave fulleroid (2) in
50% yield. The yield of based on consumed C60 was 70% yield.
[13] Further reducing the residence time resulted in low yield (a residence
time: 20 sec, 44% yield)
[14] In reference 3, the isomerization of 2 at 180 °C for 2 h gave PCBM (3)
in 98% yield. In reference 4, under irradiation conditions with an Ar ion
laser (488 nm, 50 mW), the isomerization of 2 for 1 h gave 3 in
quantitative conversion.
[3]
[4]
[5]
R. A. J. Janssen, J. C. Hummelen, F. Wudl, J. Am. Chem. Soc. 1995,
117, 544.
[15] a) T. Hamano, K. Okuda, S. Mashino, M. Hirobe, K. Arakane, T.
Nagano, Chem. Commun. 1997, 21; b) T. Nagano, K. Arakane, A. Ryu,
T. Masunaga, K. Shinmoto, S. Mashino, M. Hirobe, Chem. Pharm. Bull.
1994, 42, 2291; c) J. W. Arbogast, A. P. Darmanyan, C. S. Foote, Y.
Rubin, F. N. Diederich, M. M. Alvarez, S. J. Anz, R. L. Whetten, J. Phys.
Chem. 1991, 95, 11.
J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Org. Chem. 1995,
60, 532.
a) K. N. Semenov, N. A. Charykov, V. A. Keskinov, A. K. Piartman, A. A.
Blokhin, A. A. Kopyrin, J. Chem. Eng. Data 2009, 55, 13; b) R. J.
Doome, S. Dermaut, A. Fonseca, M. Hammida, J. B. Nagy, Fullerene
Sci. Technol. 1997, 5, 1593; c) R. S. Ruoff, D. S. Tse, R. Malhotra, D. C.
Lorents, J. Phys. Chem. 1993, 97, 3379.
[17] Conventional batch reaction gave 32% yield of PCBM with similar
product distribution.
[6]
For selected reviews on flow chemistry, see: a) T. Wirth, Microreactors
in Organic Synthesis and Catalysis, Wiley-VCH, Weinheim, 2013; b) V.
This article is protected by copyright. All rights reserved.