ꢀ
YongshengꢀTianꢀetꢀal.ꢀ/ꢀChineseꢀJournalꢀofꢀCatalysisꢀ37ꢀ(2016)ꢀ2098–2105ꢀ
2103ꢀ
tionꢀwasꢀcompleted,ꢀtheꢀHPMo‐SiO
elꢀoilꢀandꢀusedꢀforꢀaꢀsecondꢀCODSꢀreactionꢀcycle.ꢀ ꢀ
TheꢀMoꢀcontentꢀinꢀtheꢀcatalystꢀbeforeꢀandꢀafterꢀtheꢀoxidationꢀ
reactionꢀwasꢀdetectedꢀbyꢀICP‐AES,ꢀandꢀweakꢀleachingꢀofꢀHPMoꢀ
fromꢀtheꢀcatalystꢀwasꢀseenꢀinꢀtheꢀdesulfurizationꢀprocessꢀ(massꢀ
2
ꢀwasꢀmixedꢀwithꢀfreshꢀmod‐
micro‐coulometricꢀanalysis,ꢀaꢀreactionꢀprocessꢀcanꢀbeꢀproposedꢀ
asꢀtheꢀfollowing.ꢀTheꢀcatalyst,ꢀmodelꢀoilꢀandꢀhydrogenꢀperoxideꢀ
formedꢀaꢀheterogeneousꢀcatalysisꢀsystem.ꢀDuringꢀtheꢀreactionꢀ
process,ꢀBTꢀorꢀDBTꢀwasꢀfirstꢀadsorbedꢀonꢀtheꢀcatalyst,ꢀandꢀthenꢀ
oxidizedꢀbyꢀH
2
O ꢀ[15].ꢀTheꢀoxidationꢀproductꢀofꢀBTꢀwasꢀBTO2ꢀ
2
ratioꢀofꢀMo/SiO
times).ꢀItꢀisꢀdifficultꢀtoꢀremoveꢀBTO
2
ꢀdecreasedꢀfromꢀ15.9%ꢀtoꢀ14.8%ꢀafterꢀreuseꢀ10ꢀ
(DBTO2ꢀforꢀDBT),ꢀwhichꢀremainedꢀonꢀtheꢀsolidꢀcatalystꢀbecauseꢀ
ofꢀ itsꢀ highlyꢀ polarꢀ nature.ꢀ Asꢀ theꢀ BTꢀ orꢀ DBTꢀ wasꢀ transferredꢀ
2
ꢀandꢀDBTO ꢀbyꢀdirectꢀdry‐
2
ingꢀatꢀ105ꢀ°Cꢀbecauseꢀofꢀtheirꢀhighꢀmeltingꢀpointsꢀandꢀboilingꢀ
points,ꢀ whichꢀ ledꢀ toꢀ aꢀ slightꢀ decreaseꢀ inꢀ theꢀ desulfurizationꢀ
activityꢀafterꢀrepeatedꢀuseꢀofꢀtheꢀcatalyst.ꢀ
fromꢀ theꢀ oilꢀ phaseꢀ toꢀ theꢀ catalystꢀ andꢀ oxidizedꢀ toꢀ BTO
2
ꢀ orꢀ
DBTO ꢀcontinuously,ꢀaꢀlowꢀsulfurꢀmodelꢀoilꢀwasꢀachieved.ꢀ
2
4.ꢀ ꢀ Conclusionsꢀ
3.2.6.ꢀ ꢀ Analysisꢀofꢀoxidationꢀproductsꢀ
TheꢀSꢀcontentꢀofꢀtheꢀmodelꢀoilꢀdecreasedꢀfromꢀ400.0ꢀmg/gꢀ
AnꢀamorphousꢀHPMo‐SiO ꢀwhichꢀkeptꢀtheꢀKegginꢀstructureꢀ
2
toꢀ0.0ꢀmg/gꢀwithꢀ100.0%ꢀsulfurꢀremovalꢀrateꢀandꢀ99.2%ꢀmodelꢀ
oilꢀ recoveryꢀ inꢀ theꢀ reaction.ꢀ Inꢀ orderꢀ toꢀ analyzeꢀ theꢀ reactionꢀ
process,ꢀGC‐MSꢀanalysisꢀwasꢀadoptedꢀtoꢀresearchꢀtheꢀBTꢀandꢀ
DBTꢀreactionꢀprocess.ꢀAfterꢀtheꢀreaction,ꢀtheꢀoilꢀphaseꢀwasꢀsep‐
aratedꢀbyꢀcentrifugationꢀandꢀtheꢀsolidꢀcatalystꢀwasꢀextractedꢀbyꢀ
methanol.ꢀSubsequently,ꢀtheꢀoilꢀphaseꢀandꢀtheꢀmethanolꢀphaseꢀ
wereꢀanalyzedꢀbyꢀGC‐MS.ꢀAsꢀshownꢀinꢀFig.ꢀ11,ꢀonlyꢀtheꢀpeakꢀofꢀ
ofꢀ HPMoꢀwasꢀ preparedꢀ andꢀ appliedꢀinꢀtheꢀCODSꢀ system.ꢀTheꢀ
synthesisꢀofꢀtheꢀcatalystꢀwasꢀsimpleꢀandꢀeconomical.ꢀTheꢀcata‐
lystꢀgaveꢀhighꢀdesulfurizationꢀactivityꢀinꢀtheꢀremovalꢀofꢀBTꢀandꢀ
DBTꢀunderꢀmildꢀconditions.ꢀTheꢀcatalyticꢀoxidativeꢀactivityꢀforꢀ
DBTꢀwasꢀhigherꢀthanꢀthatꢀforꢀBTꢀunderꢀtheꢀsameꢀreactionꢀcon‐
ditions.ꢀTheꢀconversionꢀofꢀBTꢀandꢀDBTꢀincreasedꢀwithꢀtheꢀin‐
creaseꢀofꢀreactionꢀtemperature.ꢀTheꢀapparentꢀactivationꢀenergyꢀ
benzothiopheneꢀ sulfoneꢀ (BTO
dibenzothiopheneꢀ sulfoneꢀ (DBTO
wasꢀfoundꢀinꢀtheꢀmethanolꢀphase.ꢀHowever,ꢀnoꢀpeaksꢀbelongingꢀ
toꢀ BT,ꢀ DBT,ꢀ BTO ꢀ orꢀ DBTO ꢀ wereꢀ detectedꢀ inꢀ theꢀ oilꢀ phase,ꢀ
whichꢀ impliedꢀ thatꢀ thereꢀ wasꢀ enoughꢀ oxidantꢀ toꢀ oxidizeꢀ theꢀ
DBTꢀtoꢀDBTO ꢀinꢀ10ꢀminꢀ(BTꢀtoꢀBTO ꢀinꢀ30ꢀmin).ꢀMeanwhile,ꢀnoꢀ
2
,ꢀ Fig.ꢀ 11(a))ꢀ (m/zꢀ =ꢀ 166.1)ꢀ orꢀ
ofꢀ theꢀ DBTꢀ oxidationꢀ reactionꢀ catalyzedꢀ byꢀ HPMo‐SiO
lowerꢀthanꢀthatꢀofꢀBT.ꢀGC‐MSꢀandꢀmicro‐coulometricꢀanalysisꢀ
demonstratedꢀthatꢀBTO ꢀandꢀDBTO ꢀ adsorbedꢀ byꢀtheꢀcatalystꢀ
wereꢀtheꢀonlyꢀproductsꢀofꢀBTꢀandꢀDBTꢀoxidation.ꢀTheꢀrecyclingꢀ
experimentsꢀofꢀHPMo‐SiO ꢀindicatedꢀthatꢀDBTꢀandꢀBTꢀremovalꢀ
2
ꢀ wasꢀ
2
,ꢀ Fig.ꢀ 11(b))ꢀ (m/zꢀ =ꢀ 216.0)ꢀ
2
2
2
2
2
2
2
stillꢀreachedꢀ95.2%ꢀandꢀ95.7%ꢀafterꢀ10ꢀcycles.ꢀ
sulfurꢀ compoundꢀ wasꢀ detectedꢀ inꢀ theꢀ oilꢀ phaseꢀ byꢀ theꢀ mi‐
cro‐coulometricꢀ method.ꢀ Basedꢀ onꢀ theꢀ resultsꢀ ofꢀ GC‐MSꢀ andꢀ
Referencesꢀ
1
37.0
[1] A.ꢀAlvarez,ꢀJ.ꢀEscobar,ꢀJ.ꢀA.ꢀToledo,ꢀV.ꢀPérez,ꢀM.ꢀA.ꢀCortés,ꢀM.ꢀPérez,ꢀ
(a)
1
09.0
E.ꢀRivera,ꢀFuel,ꢀ2007,ꢀ86,ꢀ1240–1246.ꢀ
S
[2] C.ꢀP.ꢀYang,ꢀK.ꢀZhao,ꢀY.ꢀCheng,ꢀG.ꢀM.ꢀZeng,ꢀM.ꢀM.ꢀZhang,ꢀJ.ꢀJ.ꢀShao,ꢀL.ꢀ
O
O
Lu,ꢀSep.ꢀPurif.ꢀTechnol.,ꢀ2016,ꢀ163,ꢀ153–161.ꢀ
9
0.1
[3] M.ꢀAgarwal,ꢀP.ꢀK.ꢀDikshit,ꢀJ.ꢀB.ꢀBhasarkar,ꢀA.ꢀJ.ꢀBorah,ꢀV.ꢀS.ꢀMohol‐
kar,ꢀChem.ꢀEng.ꢀJ.,ꢀ2016,ꢀ295,ꢀ254–267.ꢀ
7
6.1
6
1.1
5.0
166.1
5
1
18.0
BTO
2
[4] A.ꢀK.ꢀChauhan,ꢀA.ꢀAhmad,ꢀS.ꢀP.ꢀSingh,ꢀA.ꢀKumar,ꢀInt.ꢀBiodeter.ꢀBio‐
degr.,ꢀ2015,ꢀ104,ꢀ105–111.ꢀ
3
0
60
90
120
150
mm//zz
After
[
5] S.ꢀ Velu,ꢀ X.ꢀ L.ꢀ Ma,ꢀ C.ꢀ S.ꢀ Song,ꢀ Ind.ꢀ Eng.ꢀ Chem.ꢀ Res.,ꢀ2003,ꢀ42,ꢀ
293–5304.ꢀ
[6] M.ꢀ Makarova,ꢀY.ꢀ Okawa,ꢀ M.ꢀ Aono,ꢀ J.ꢀ Phys.ꢀ Chem.ꢀ C,ꢀ 2012,ꢀ 116,ꢀ
2411–22416.ꢀ
7] L.ꢀ Gao,ꢀ H.ꢀ Wan,ꢀ M.ꢀ Han,ꢀ G.ꢀ Guan,ꢀ Petrol.ꢀ Sci.ꢀ Technol.,ꢀ2014,ꢀ32,ꢀ
309–1317.ꢀ
8] C.ꢀZhang,ꢀX.ꢀY.ꢀPan,ꢀF.ꢀWang,ꢀX.ꢀQ.ꢀLiu,ꢀFuel,ꢀ2012,ꢀ102,ꢀ580–584.ꢀ
5
BT
Before
2
2
3
4
5
6
7
8
[
[
Time (min)
1
2
16.0
(
b)
[9] B.ꢀS.ꢀGuo,ꢀR.ꢀWang,ꢀY.ꢀH.ꢀLi,ꢀFuel,ꢀ2011,ꢀ90,ꢀ713–718.ꢀ
10] X.ꢀL.ꢀRen,ꢀG.ꢀMiao,ꢀZ.ꢀY.ꢀXiao,ꢀF.ꢀY.ꢀYe,ꢀZ.ꢀLi,ꢀH.ꢀH.ꢀWang,ꢀJ.ꢀXiao,ꢀFuel,ꢀ
2016,ꢀ174,ꢀ118–125.ꢀ
11] C.ꢀG.ꢀLiu,ꢀH.ꢀLiu,ꢀC.ꢀL.ꢀYin,ꢀX.ꢀP.ꢀZhao,ꢀB.ꢀLiu,ꢀX.ꢀH.ꢀLi,ꢀY.ꢀP.ꢀLi,ꢀY.ꢀQ.ꢀLiu,ꢀ
Fuel,ꢀ2015,ꢀ154,ꢀ88–94.ꢀ
12] J.ꢀ L.ꢀ García‐Gutiérrez,ꢀ G.ꢀ C.ꢀ Laredo,ꢀ G.ꢀ A.ꢀ Fuentes,ꢀ P.ꢀ Gar‐
cía‐Gutiérrez,ꢀF.ꢀJiménez‐Cruz,ꢀFuel,ꢀ2014,ꢀ138,ꢀ98–103.ꢀ
13] D.ꢀZheng,ꢀW.ꢀS.ꢀZhu,ꢀS.ꢀH.ꢀXun,ꢀM.ꢀM.ꢀZhou,ꢀM.ꢀZhang,ꢀW.ꢀJiang,ꢀY.ꢀJ.ꢀ
Qin,ꢀH.ꢀM.ꢀLi,ꢀFuel,ꢀ2015,ꢀ159,ꢀ446–453.ꢀ
[
[
[
[
[
[
[
S
139.1
O
6
O
115.1
1
87.0
3.0 79.0
168.1
60.1
1
5
1.0
9
8.0
DBTO
2
3
0
60
90
120
m/z
150
180
210
m/z
After
Before
16
DBT
14] R.ꢀSundararaman,ꢀX.ꢀL.ꢀMa,ꢀC.ꢀS.ꢀSong,ꢀInd.ꢀEng.ꢀChem.ꢀRes.,ꢀ2010,ꢀ
4
9,ꢀ5561–5568.ꢀ
15] B.ꢀY.ꢀZhang,ꢀZ.ꢀX.ꢀJiang,ꢀJ.ꢀLi,ꢀY.ꢀN.ꢀZhang,ꢀF.ꢀLin,ꢀY.ꢀLiu,ꢀC.ꢀLi,ꢀJ.ꢀCatal.,ꢀ
012,ꢀ287,ꢀ5–12.ꢀ
4
6
8
10
Time (min)
12
14
2
16] L.ꢀF.ꢀRamírez‐Verduzco,ꢀJ.ꢀA.ꢀDeꢀlosꢀReyes,ꢀE.ꢀTorres‐García,ꢀInd.ꢀ
Eng.ꢀChem.ꢀRes,ꢀ2008,ꢀ47,ꢀ5353–5361.ꢀ
Fig.ꢀ 11.ꢀ GC‐MSꢀ analysisꢀ ofꢀ BTO
2
ꢀ (a)ꢀ andꢀ DBTO ꢀ (b)ꢀ beforeꢀ andꢀ after
2
reaction.ꢀ