Intramolecular Photoinduced Electron Transfer
J. Am. Chem. Soc., Vol. 118, No. 12, 1996 2893
In another type of molecules with the donor and the acceptor
groups directly connected by a single σ-bond, conformational
folding is excluded.24-29 It has been shown30-53 that primary
excited singlet states of p-(9-anthryl)-N,N-dimethylaniline
(ADMA) and related compounds undergo solvent-assisted
femto/picosecond relaxation to a polar fluorescent CT state. The
geometry and electronic structure of the emitting CT state,
however, are still a point of discussion.28,29,34,46 Okada and co-
workers30-32 first explained their results in terms of the TICT
(twisted intramolecular charge transfer) state model.34,54 Ac-
cording to this interpretation, the excited singlet state undergoes
an adiabatic intramolecular electron transfer. Two metastable
states are assumed to interconvert by a torsional motion, which
provides a possible reaction coordinate for the electron transfer.
More recent picosecond transient absorption studies however
show a difference between the electronic structure of the excited
state of ADMA or structurally similar molecules and that of
molecules with strongly orthogonal π systems of donor
and acceptor (e.g., 4-(9-anthryl)-N,N,2,6-tetramethylaniline)
(ATMA)).46,49,55 The transient absorption spectra of ADMA
in medium polar solvents cannot be represented by a linear
combination of the anthracene-like band in weakly polar, and
the anthracene anion radical band in strongly polar, solvents,
Figure 1. Structures of 9PhPhen and 9Dphen.
so doubts have been expressed as to the validity of the simple
two-state TICT model for ADMA and related compounds.
Thereby an aryl-amine torsion angle of less than 90° is
proposed for the excited states of these compounds.
A similar conclusion was also reached in recent quantum
chemical calculations56 where twist angle dependent values of
transition energies, oscillator strengths, and dipole moments
were calculated.
Similar to the behavior of ADMA and related compounds,
other large conjugated π-systems connected formally by a single
bond29,56-58 indicate a nonorthogonal geometry of the CT state
or a TICT state strongly vibronically coupled with a nearby
nonpolar state.59
A different model, not involving intramolecular twisting, has
recently been proposed to explain the dual fluorescence in
aminobenzonitriles, the compounds originally explained within
the TICT framework.34,54 In this model the dual emission is
interpreted as a solvent-induced pseudo-Jahn-Teller effect: dual
fluorescence and intramolecular charge transfer (ICT) are
observed when two excited levels S1 and S2 (CT) in N,N-
dimethyl-4-aminobenzonitrile (DMABN) have an energy gap
sufficiently small for vibronic coupling. It is argued that the
N-inversion of the amino group acts as a promoting mode which
decouples, even without rotational isomerization, the nitrogen
lone pair from the π-electrons of the phenyl ring.60,61
This interpretation was based on the observation of intramo-
lecular charge transfer in a series of 4-(dialkylamino)benzoni-
triles (methyl, ethyl, propyl, and decyl), even in apolar solvents.
The observation that the charge separation increased with
increasing length of the alkyl chain was difficult to explain
within the the former TICT model.
Recently, however, CASSCF (complete active space self-
consistent field) calculations62 seem not to support such an
alternative interpretation as the only contributive mechanism
to the CT state.
Also in another recent publication63 where solvent effects
have been analyzed using a microstructural solvation model
associated with the AM1 results of some parasubstituted N,N-
dimethylaniline derivatives, the same conclusion is obtained.
The dual fluorescence phenomena could be related to the
presence of a twisted internal charge-transfer state which is
stabilized even in a nonpolar solvent but cannot be related only
to the presence of a wagged internal charge-transfer state, even
in a strongly polar solvent.
(24) Rettig, W. Angew. Chem., Int. Ed. Engl. 1986, 25, 971.
(25) Hagopian, S.; Singer, L. A. J. Am. Chem. Soc. 1985, 107, 1874.
(26) Detzer, N.; Baumann, W.; Schwager; B.; Frohling, J.-C.; Brittinger,
C. Z. Naturforsch. 1987, A42, 395.
(27) Siemiarczuk, A.; Koput, J.; Pohorillo, A. Z. Naturforsch. 1982, A37,
598.
(28) Herbich, J.; Kapturkiewicz, A. Chem. Phys. 1991, 158, 143, and
references therein.
(29) Herbich, J.; Kapturkiewicz, A. Chem. Phys. 1993, 170, 221.
(30) Okada, T.; Fujita, T.; Kubota,M.; Masaki, S.; Mataga,N.; Ide, R.;
Sakata, Y.; Misumi, S. Chem. Phys. Lett. 1972, 14, 563.
(31) Okada, T.; Fujita, T; Mataga, N. Z. Phys. Chem. NF 1976, 101, 57.
(32) Masaki, S.; Okada, T.; Mataga, N.; Sakata, Y.; Misumi, S. Bull.
Chem. Soc. Jpn. 1976, 49, 1277.
(33) Chandross, E. A. In The Exciplex; Gordon, M.; Ware, W.R., Eds.;
Academic Press: New York, 1975; p 187.
(34) Grabowski, Z. R.; Rotkiewicz, K.; Siemiarczuk, A.; Cowley, D. J;
Baumann, W. NouV. J. Chim. 1979, 3, 443.
(35) Grabowski, Z. R.; Dobkowski, J. Pure Appl. Chem. ,1983, 55, 245.
(36) Grabowski, Z. R. Acta Phys. Pol. 1987, A71, 743.
(37) Grabowski, Z. R. In Supramolecular Photochemistry; Balzani, V.,
Ed.; Reidel: Dordrecht, The Netherlands, 1987; p 319.
(38) Siemiarczuk, A.; Grabowski, Z. R.; Kro´wczynski, A.; Asher, M.;
Ottolenghi, M. Chem. Phys. Lett. 1977, 51, 315.
(39) Grabowski, Z. R.; Rotkiewicz, K.; Siemiarczuk, A. J. Lumin. 1979,
18/19, 420.
(40) Siemiarczuk, A. Chem. Phys. Lett. 1984, 110, 437.
(41) Siemiarczuk, A.; Ware,W. R. J. Phys. Chem. 1987, 91, 3677.
(42) Baumann, W.; Petzke, F.; Loosen, K. D. Z. Naturforsch. 1979, A34,
1070.
(43) Baumann, W.; Bischof, H. J. Mol. Struct. 1982, 84, 181.
(44) Detzer, N.; Baumann, W.; Scwager, B.; Fro¨hling, J. C.; Brittinger,
C. Z. Naturforsch. 1987, A42, 395.
(45) Okada,T.; Kawai, M.; Ikemachi,T.; Mataga, N; Sakata,Y.; Misumi,
S.; Shionoya, S. J. Phys. Chem. 1984, 88, 1976.
(46) Okada,T.; Mataga, N.; Baumann, W.; Siemiarczuk, A. J. Phys.
Chem. 1987, 91, 4490.
(47) Baumann, W.; Schwager, B.; Detzer, N.; Okada, T.; Mataga, N. J.
Phys. Chem. 1988, 92, 3742.
(48) Mataga, N.; Yao, H.; Okada, T.; Rettig, W. J. Phys. Chem. 1989,
93, 3383.
(49) Mataga, N.; Nishikawa, S.; Asahi, T.; Okada,T. J. Phys. Chem. 1990,
94, 1443.
(50) Barbara, P. F.; Jarzeba, W. In AdVances in Photochemistry; Volman,
D. H., Hammond, G. S., Gollnick, C., Eds.; Wiley: New York, 1990; Vol.
15, p 1.
(51) Tseng, J. C. C.; Huang, S.; Singer, L. A. Chem. Phys. Lett. 1988,
153, 401.
(52) Tseng, J. C. C.; Singer, L. A. J. Phys. Chem. 1989, 93, 7092.
(53) Rettig, W; Baumann, W. In: Photochemistry and Photophysics;
Rabek, J. F., Ed.; CRC Press: Boca Raton, FL, 1992; Vol. 6, p 79.
(54) Rettig, W. Electron transfer I. In Topics in Current Chemistry, Vol.
169; Mattay, J., Ed.; Spinger Verlag: Berlin, 1994; p 253.
(55) Okada, T. Proc.sIndian Acad. Sci., Chem. Sci. 1992, 104, 173.
(56) Klock, A. M.; Rettig, W. Polish. J. Chem. 1993, 67, 1375.
(57) Van Damme, M.; Hofkens, J.; De Schryver, F. C.; Ryan, T. G.;
Rettig, W.; Klock, A. M. Tetrahedron 1989, 45, 4693.
(58) Herbich, J.; Waluk, J. Chem. Phys 1994, 188, 247.
(59) Dobkowski, J.; Grabowski, Z.; Paeplow, B.; Rettig, W.; Koch, K.;
Mu¨llen, K.; Lapouyade, R. New. J. Chem. 1994, 18, 525.
(60) Schuddeboom, W.; Jonker, S. A.; Warman, J. M.; Leinhos, U.;
Ku¨hnle, W.; Zachariasse, K. J. Phys. Chem. 1992, 96, 10809.
(61) Zachariasse, K.; Von Der Haar; T.; Hebecker, A.; Leinhos, U.;
Ku¨hnle, W. Pure Appl. Chem. 1993, 65, 1745.
(62) Serrano-AndrC¸ s, L.; Merchan, M.; Roos, B. O.; Lindh, R. J. Am.
Chem. Soc. 1995, 117, 3189.
(63) Gorse, A. D.; Pesquer, M. J. Phys. Chem. 1995, 99, 4039.