F. Dioury et al. / Tetrahedron Letters 46 (2005) 611–613
613
In conclusion, the synthesis of the rigidified pyridine
containing azamacrocycle 1 was achieved in five steps
from activated aziridine 5 and ethylenediamine deriva-
tive 8 in 13% overall yield. The preparation of the corre-
sponding Gd3+-complex has been realized and a
preliminary assay of transmetallation in the presence
of Zn2+ cation, at pH = 7 and at 37 °C, showed a stabil-
ity of the complex equivalent to that of complexes
formed with DTPA and DOTA ligands. This result
encouraged us to pursue the characterization; measure-
ments in order to evaluate the relaxivity of the complex
are in due course.
N
N
N
N
b
a
NH
NH
rac-9
ArSO2
N
N SO2Ar
CO2tBu
CO2tBu
rac-11
rac-10
N
N
tBuO2C
CO2tBu
di-N-alkylated product(s)
or
tetra-N-alkylated product
N
+
c or d
N
CO2tBu
rac-12
Scheme 2. Reagents and conditions: (a) 2,6-bis(bromomethyl)pyri-
dine, K2CO3, N,N-dimethylacetamide, 100 °C, 4 h, 69%; (b) PhSH,
Na2CO3, CH3CN, 50 °C, 1 day, 44%; (c) tert-butyl bromoacetate,
Et3N, THF, 55 °C, 1 day; (d) K2CO3, CH3CN, reflux, 2 h then tert-
butyl bromoacetate, reflux, 40 h.
Acknowledgements
Financial support from Laboratoires Guerbet is grate-
fully acknowledged.
CO2tBu
SO2Ar
CO2tBu
References and notes
CO2tBu
SO2Ar
N
N
NH
b
H
N
a
rac-9
CO2tBu
N
1. Jacques, V.; Desreux, J. F. Top. Curr. Chem. 2002, 221,
123–164.
2. Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B.
Chem. Rev. 1999, 99, 2293–2352.
N
CO2tBu
CO2tBu
rac-13
rac-14
c
d, e
3. Aime, S.; Botta, M.; Ermondi, G.; Fedeli, F.; Uggeri, F.
Inorg. Chem. 1992, 31, 1100–1103.
rac-1
rac-12
Scheme 3. Reagents and conditions: (a) tert-butyl bromoacetate,
K2CO3, CH3CN, reflux, overnight; 65%; (b) 2-mercaptoethanol,
DBU, CH3CN, rt, 2 h, 52%; (c) 2,6-bis(bromomethyl)pyridine,
Na2CO3, N,N-dimethylformamide, 100 °C, 3 h, 59%; (d) HCl, Et2O,
rt, 6 h then ion-exchange resin chromatography, 80%.
4. Ranganathan, R. S.; Raju, N.; Fan, H.; Zhang, X.;
Tweedle, M. F.; Desreux, J. F.; Jacques, V. Inorg. Chem.
2002, 41, 6856–6866.
5. Aime, S.; Botta, M.; Crich, S. G.; Giovenzana, G. B.;
Jommi, G.; Pagliarin, R.; Sisti, M. Inorg. Chem. 1997, 36,
2992–3000.
6. Kan, T.; Fukuyama, T. Chem. Commun. 2004, 353–359.
7. Kirsanov, A. V.; Kirsanova, N. A. J. Gen. Chem. USSR
1962, 32, 877–882.
8. Siaugue, J. M.; Segat-Dioury, F.; Sylvestre, I.; Favre-
Reguillon, A.; Foos, J.; Madic, C.; Guy, A. Tetrahedron
2001, 57, 4713–4718.
9. Dioury, F.; Sylvestre, I.; Siaugue, J.-M.; Wintgens, V.;
Ferroud, C.; Favre-Reguillon, A.; Foos, J.; Guy, A. Eur.
J. Org. Chem. 2004, 21, 4424–4436.
10. Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett.
1995, 36, 6373–6374.
11. Galaup, C.; Couchet, J. M.; Picard, C.; Tisnes, P.
Tetrahedron Lett. 2001, 42, 6275–6278.
12. Nihei, K.-I.; Kato, M. J.; Yamane, T.; Palma, M. S.;
Konno, K. Synlett 2001, 1167–1169.
13. Rew, Y.; Goodman, M. J. Org. Chem. 2002, 67, 8820–
8826.
By using an excess of tert-butyl bromoacetate in the
presence of potassium carbonate, the previously pre-
pared secondary disulfonamide 9 was N-alkylated to
afford the corresponding tertiary compound 13 in 65%
yield. The desulfonylation proceeded smoothly by using
2-mercaptoethanol in the presence of 1,8-diazabicy-
clo[5.4.0]undec-7-ene (DBU)12,13 and led to the func-
tionalized triamine 14 that was involved in the
macrocyclization reaction with 2,6-bis(bromom-
ethyl)pyridine to furnish the desired macrocyclic com-
pound in 59% yield. When treated with anhydrous
hydrochloric acid, the triester 12 was converted to the
target macrocyclic triacetic acid 1 isolated with high
yield (80%).
1H and 13C NMR analyses of compound 1 have been done in D2O;
1H and 13C spectra are complex probably due to the co-existence of
several conformers and/or protonated forms in aqueous solution. IR
(KBr): m = 3409 (broad), 2925, 2850, 1738, 1445, 1405, 1201 cmꢀ1
.
FAB-HRMS: m/z calcd for C21H31N4O6 435.2244, found 435.2235
[M+H]+.