Inorganic Chemistry
Article
framework of MOF−Cu2I2(BTTP4), regardless of the different
CuI/BTTP4 ratios, due to the following reasons: (i) MOF−
Cu2I2(BTTP4) was the unique product in these solutions in
spite of varied CuI/BTTP4 ratios (e.g., 1:2, 1:1, 2:1, and 3:1),
whereas the filtrate did not display noticeable catalytic activity
with the conversion less than 2.8% after 2 h (Figure S4); (ii)
excess CuI in solution (in the case of CuI/BTTP4 ratio of 3:1)
contributed little to transformation in comparison with the
MOF−Cu2I2(BTTP4), which was quantitatively formed in the
case of the 2:1 CuI/BTTP4 ratio; and (iii) an excess amount of
BTTP4 (in cases of CuI/BTTP4 ratios of 1:1 and 1:2) showed
an inhibiting effect on reactions probably because they not only
prevented the substrates from approximating the active metal
centers of MOF−Cu2I2(BTTP4), but the 1:1 and 1:2 CuI/
BTTP4 mixtures also gave a lower relative crystallinity
compared to 2:1 CuI/BTTP4 mixtures.
REFERENCES
■
(1) Farrusseng, D.; Aguado, S.; Pinel, C. Angew. Chem., Int. Ed. 2009,
48, 7502−7513.
(2) Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248−1256.
(3) Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. B.
T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450−1459.
́
(4) (a) Corma, A.; García, H.; LIabres i Xamena, F. X. Chem. Rev.
2010, 110, 4606−4655. (b) Dhakshinamoorthy, A.; García, H. Chem.
Soc. Rev. 2012, 41, 5262−5284.
(5) Kim, K.; Banerjee, M.; Yoon, M.; Das, S. Top. Curr. Chem. 2010,
293, 115−153.
(6) Ma, L.; Lin, W. Top. Curr. Chem. 2010, 293, 175−205.
(7) Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196−
1231.
(8) (a) Huang, Y.; Liu, T.; Lin, J.; Lu, J.; Lin, Z.; Cao, R. Inorg. Chem.
̈
2011, 50, 2191−2198. (b) Huang, Y.; Lin, Z.; Cao, R. Chem.Eur. J.
2011, 17, 12706−12712. (c) Huang, Y.; Liu, S.; Lin, Z.; Li, W.; Li, X.;
Cao, R. J. Catal. 2012, 292, 111−117.
(9) Falkowski, J. M.; Wang, C.; Liu, S.; Lin, W. Angew. Chem., Int. Ed.
2011, 50, 8674−8678.
4. CONCLUSIONS
In summary, the permanently porous metal−organic frame-
work, MOF−Cu2I2(BTTP4), which is assembled from a rigid
tritopic ligand benzene-1,3,5-triyl triisonicotinate (BTTP4) and
CuI, is proven to be able to catalyze the three-component
coupling of sulfonyl azides, alkynes, and amines in an efficiently
heterogeneous way, leading to formation of important organic
compounds of amidines with good yields. The unique structural
features of MOF−Cu2I2(BTTP4), including incorporation of
redox-active and coordinatively unsaturated CuI sites into pore
surface, suitable framework channel size surrounded by rigid
nitrogen-containing tripodal ligands, and porosity robustness
against evacuation of solvent molecules, endow the MOF−
Cu2I2(BTTP4) catalyst with versatile character such as
unprecedented heterogeneous ligand-accelerated effect, size-
effect, and recyclability for reuse of the catalyst. The catalytic
performance has been studied by various physical and chemical
methods, indicating that MOF−Cu2I2(BTTP4) could provide a
platform to carry out the catalytic reactions inside its large
cavities. Further investigations on the catalytic applications of
MOF−Cu2I2(BTTP4) toward more organic reactions are
underway.
(10) Farha, O. K.; Shultz, A. M.; Sarjeant, A. A.; Nguyen, S. T.;
Hupp, J. T. J. Am. Chem. Soc. 2011, 133, 5652−5655.
(11) Yang, X.-L.; Xie, M.-H.; Zou, C.; He, Y.; Chen, B.; O’Keeffe, M.;
Wu, C.-D. J. Am. Chem. Soc. 2012, 134, 10638−10645.
(12) Lun, D. J.; Waterhouse, G. I. N.; Telfer, S. G. J. Am. Chem. Soc.
2011, 133, 5806−5809.
(13) Roberts, J. M.; Fini, B. M.; Sarjeant, A. A.; Farha, O. K.; Hupp, J.
T.; Scheidt, K. A. J. Am. Chem. Soc. 2012, 134, 3334−3337.
(14) Banerjee, M.; Das, S.; Yoon, M.; Choi, H. J.; Hyun, M. H.; Park,
S. M.; Seo, G.; Kim, K. J. Am. Chem. Soc. 2009, 131, 7524−7525.
(15) Wu, P.; He, C.; Wang, J.; Peng, X.; Li, X.; An, Y.; Duan, C. J.
Am. Chem. Soc. 2012, 134, 14991−14999.
(16) Wang, M.; Xie, M.-H.; Wu, C.-D.; Wang, Y.-G. Chem. Commun.
2009, 45, 2396−2398.
(17) Jing, X.; He, C.; Dong, D.; Yang, L.; Duan, C. Angew. Chem., Int.
Ed. 2012, 51, 10127−10131.
(18) Luz, I.; LIabres
285−291.
́
i Xamena, F. X.; Corma, A. J. Catal. 2010, 285,
(19) Jiang, D.; Mallat, T.; Meier, D. M.; Urakawa, A.; Baiker, A. J.
Catal. 2010, 270, 26−33.
(20) Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. J. Catal. 2012,
289, 259.
(21) Lin, X.-M.; Li, T.-T.; Chen, L.-F.; Zhang, L.; Su, C.-Y. Dalton
Trans. 2012, 41, 10422−10429.
(22) Lin, X.-M.; Li, T.-T.; Wang, Y.-W.; Zhang, L.; Su, C.-Y. Chem.
ASSOCIATED CONTENT
■
Asian J. 2012, 7, 2796−2804.
S
* Supporting Information
(23) Tan, X.; Li, L.; Zhang, J.; Han, X.; Jiang, L.; Li, F.; Su, C.-Y.
Chem. Mater. 2012, 24, 480−485.
Ligand-accelerated catalytic experiments, catalytic recycle test,
synthesis of Ts−N3, NMR spectra of pure products of
amidines, and single-crystal and powder X-ray diffraction
(PXRD) analyses. This material is available free of charge via
(24) Wang, S. J.; Li, L.; Zhang, J. Y.; Yuan, X. C.; Su, C.-Y. J. Mater.
Chem. 2011, 21, 7098−7104.
(25) Yang, R.; Li, L.; Xiong, Y.; Li, J.-R.; Zhou, H.-C.; Su, C.-Y.
Chem.Asian J. 2010, 5, 2358−2368.
(26) He, Q.-T.; Li, X.-P.; Chen, L.-F.; Zhang, L.; Wang, W.; Su, C.-Y.
ACS Catal. 2012, 3, 1−9.
AUTHOR INFORMATION
■
(27) He, Q.-T.; Li, X.-P.; Liu, Y.; Yu, Z.-Q.; Wang, W.; Su, C.-Y.
Angew. Chem., Int. Ed. 2009, 48, 6156−6159.
(28) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002,
67, 3057−3064.
Corresponding Author
(29) Rostovsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596−2599.
(30) Bae, I.; Han, H.; Chang, S. J. Am. Chem. Soc. 2005, 127, 2038−
2039.
Notes
The authors declare no competing financial interest.
(31) Cho, S. H.; Yoo, E. J.; Bae, I.; Chang, S. J. Am. Chem. Soc. 2005,
ACKNOWLEDGMENTS
■
127, 16046−16047.
This work was supported by the 973 Program
(2012CB821701) and NSF Projects (21102186, 91222201,
21121061, 21173272, and U0934003) of China, the FRF for
the Central Universities, and the RFDP of Higher Education of
China.
(32) Kim, S. H.; Park, S. H.; Choi, J. H.; Chang, S. Chem.Asian J.
2011, 6, 2618−2634.
(33) Yoo, E. J.; Chang, S. Curr. Org. Chem. 2009, 13, 1766−1776.
(34) Rodionov, V. O.; Presolski, S. I.; Gardinier, S.; Lim, Y.-H.; Finn,
M. G. J. Am. Chem. Soc. 2007, 129, 12696−12704.
9058
dx.doi.org/10.1021/ic4012229 | Inorg. Chem. 2013, 52, 9053−9059