these macromolecules are constructed with imide link-
ages, which have a large influence on the photophysical
and conformational properties of the molecules.13,14 How-
ever, an important synthetic challenge is the efficient
formation of imide bonds that connect the various
components of these target molecules under conditions
sufficiently mild to prevent the alteration of other
functional groups within the molecules. N-Aryl imide
bond formation frequently requires the low-yielding
condensation of an arylamine with a free anhydride at
high temperatures for extended periods of time. Ad-
ditional complications can include the air sensitivity of
many amines as well as the insolubility and hydrolytic
susceptibility of the anhydrides. Herein, we report that
cyclic imides and arylboronic esters undergo efficient
N-arylation reactions in the presence of copper(II) ac-
etate.
Copper-Promoted N-Arylations of Cyclic
Imides within Six-Membered Rings: A
Facile Route to Arylene-Based Organic
Materials
Erin T. Chernick, Michael J. Ahrens,
Karl A. Scheidt,* and Michael R. Wasielewski*
Department of Chemistry and Center for Nanofabrication
and Molecular Self-Assembly, Northwestern University,
2145 Sheridan Road, Evanston, Illinois 60208-3113
Received October 21, 2004
Transition metal-catalyzed cross-coupling reactions
have revolutionized organic synthesis over the last
several decades. There have been a number of recent
advances in the field of transition metal-promoted C-N
cross-coupling reactions, most notably by Buchwald and
Hartwig.15-22 We desired a mild and efficient method to
N-arylate cyclic imides within six-membered rings from
the corresponding free imide and aryl boronic ester.
Although copper-promoted heteroatom coupling reactions
between various amines, amides, thiols, and boronic acids
have been reported,23-37 the use of imides as coupling
Cyclic imides within six-membered rings are shown to
undergo efficient N-arylation using various arylboronic
esters mediated by copper(II) acetate in the presence of an
amine base and oxygen atmosphere with gentle heating.
Until now, the synthesis of N-arylated cyclic imides having
six-membered rings was restricted largely to strongly heat-
ing anilines in the presence of anhydrides. This reaction is
applicable to the synthesis of new organic materials based
on arylene imide and bis(imide) dyes, such as perylene-3,4:
9,10-bis(dicarboximide)s.
(12) Greenfield, S. R.; Svec, W. A.; Gosztola, D.; Wasielewski, M. R.
J. Am. Chem. Soc. 1996, 118, 6767-6777.
(13) Zhao, Y.; Wasielewski, M. R. Tetrahedron Lett. 1999, 40, 7047-
7050.
Molecules that contain multiple imide linkages have
a variety of scientific and industrial applications, includ-
ing polymers, organic semiconductors, photovoltaics,
OLEDS, fluorescent tags, dyes, etc.1-5 Current interest
includes developing molecules that mimic light harvest-
ing and photoinduced charge separation within photo-
synthetic proteins. Quite often, these molecules contain
redox active chromophores that utilize π-π interactions
to self-assemble into supramolecular arrays.6-12 Many of
(14) Holtrup, F. O.; Mu¨ller, G. R. J.; Uebe, J.; Mullen, K. Tetrahedron
1997, 53, 6847-6860.
(15) Antilla, J. C.; Buchwald, S. L. Org. Lett. 2001, 3, 2077-2079.
(16) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett.
2003, 5, 3667-3669.
(17) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2003, 5, 793-796.
(18) Hooper, M. W.; Hartwig, J. F. Organometallics 2003, 22, 3394-
3403.
(19) Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org.
Chem. 2002, 67, 5553-5566.
(20) Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. 2002, 4,
581-584.
(21) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am.
Chem. Soc. 2001, 123, 7727-7729.
(1) Rybtchinski, B.; Sinks, L. E.; Wasielewski, M. R. J. Am. Chem.
Soc. 2004, 126, 12268-12269.
(22) Kiyomori, A.; Marcoux, J.-F.; Buchwald, S. L. Tetrahedron Lett.
1999, 40, 2657-2660.
(2) Li, X.; Sinks, L. E.; Rybtchinski, B.; Wasielewski, M. R. J. Am.
Chem. Soc. 2004, 126, 10810-10811.
(23) Ley, S. V.; Thomas, A. W. Angnew. Chem., Int. Ed. 2003, 42.
(24) Rossiter, S.; Woo, C. K.; Hartzoulakis, B.; Wishart, G.; Stanyer,
L.; Labadie, J. W.; Selwood, D. L. J. Comb. Chem. 2004, 6, 385-390.
(25) Yu, Y.; Liebeskind, L. S. J. Org. Chem. 2004, 69, 3554-3557.
(26) Lan, J.-B.; Zhang, G.-L.; Yu, X.-Q.; You, J.-S.; Chen, L.; Yan,
M.; Xie, R.-G. Synlett 2004, 6, 1095-1097.
(3) You, C.-C.; Wu¨rthner, F. Org. Lett. 2004, 6, 2401-2404.
(4) Ahrens, M. J.; Fuller, M. J.; Wasielewski, M. R. Chem. Mater.
2003, 15, 2684-2686.
(5) You, C.-C.; Wu¨rthner, F. J. Am. Chem. Soc. 2003, 125, 9716-
9725.
(6) Ahrens, M. J.; Sinks, L. E.; Rybtchinski, B.; Liu, W.; Jones, B.
A.; Giaimo, J. M.; Gusev, A. V.; Goshe, A. J.; Tiede, D. M.; Wasielewski,
M. R. J. Am. Chem. Soc. 2004, 126, 8284-8294.
(27) Quach, T. D.; Batey, R. A. Org. Lett. 2003, 5, 4397-4400.
(28) Liebeskind, L. S.; Srogl, J. Org. Lett. 2002, 4, 979-981.
(29) Lam, P. Y. S.; Vincent, G.; Clark, C. G.; Deudon, S.; Jadhav, P.
K. Tetrahedron Lett. 2001, 3415-3418.
(30) Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260-
11261.
(31) Herradura, P. S.; Pendola, K. A.; Guy, R. K. Org. Lett. 2000, 2,
2019-2022.
(32) Collman, J. P.; Zhong, M. Org. Lett. 2000, 2, 1233-1236.
(33) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Averill, K.
M.; Chan, D. M. T.; Combs, A. Synlett 2000, 5, 674-676.
(34) Collot, V.; Bovy, P. R.; Rault, S. Tetrahedron Lett. 2000, 41,
9053-9057.
(35) Mederski, W. W. K. R.; Lefort, M.; Germann, M.; Kux, D.
Tetrahedron 1999, 55, 12757-12770.
(7) van Herrikhuyzen, J.; Syamakumari, A.; Schenning, A. P. H. J.;
Meijer, E. W. J. Am. Chem. Soc. 2004, 126, 10021-10027.
(8) Wu¨rthner, F.; Chen, Z.; Hoeben, F. J. M.; Osswald, P.; You, C.-
C.; Jonkheijm, P.; van Herrikhuyzen, J.; Schenning, A. P. H. J.; van
der Schoot, P. P. A. M.; Meijer, E. W.; Beckers, E. H. A.; Meskers, S.
C. J.; Janssen, R. A. J. J. Am. Chem. Soc. 2004, 126, 10611-10618.
(9) Hayes, R. T.; Walsh, C. J.; Wasielewski, M. R. J. Phys. Chem. A
2004, 108, 3253-3260.
(10) Weiss, E. A.; Sinks, L. E.; Lukas, A. S.; Chernick, E. T.; Ratner,
M. A.; Wasielewski, M. R. J. Phys. Chem. B 2004, 108, 10309-10316.
(11) Schmidt-Mende, L.; Fechtenko¨tter, A.; Mu¨llen, K.; Moons, E.;
Friend, R. H.; Mackenzie, J. D. Science 2001, 293, 1119-1122.
10.1021/jo0481351 CCC: $30.25 © 2005 American Chemical Society
Published on Web 01/22/2005
1486
J. Org. Chem. 2005, 70, 1486-1489