Photoexcited Perylene-3,4:9,10-bis(dicarboximide)
A R T I C L E S
23-27
21,50,65
pairs (RPs) in which the initial spin state is well defined.
We
and electron spin polarization transfer (ESPT).
A triplet
and others investigated how to control the spin dynamics of these
state with a Boltzmann population of its spin sublevels can
polarize a radical by means of a spin-sorting process. Both
mechanisms are predicated on diffusive encounters between the
photoexcited triplet state molecule and the radical in solution.
In the case of the RTPM, however, it is not necessary for the
triplet state to be polarized initially. Recently, a few examples
of photoexcited triplet states having covalently attached radicals
28-35
covalent RPs using the influence of additional spins.
These
organic RPs display coherent spin motion for microseconds at room
36,37
temperature and longer at low temperatures,
which makes it
possible that this coherence could provide the basis for new organic
3,35,38-42
information-processing devices.
Spin polarization as a result of triplet-radical interactions
22,53,54,57
has been attributed for the most part to two complementary
haveappeared,e.g.,ZnTPPcoordinatedwithpyridylnitronylnitroxides
22,43-56
58,59
mechanisms, the radical-triplet pair mechanism (RTPM)
and tert-butylpyridylnitroxides,
silicon phthalocyanines and
fullerenes with attached 2,2,6,6-tetramethylpiperidine-N-oxyl
1
8,20,60-64
(
TEMPO) substituents,
as well as verdazyl and nit-
(
23) Hasharoni, K.; Levanon, H.; Greenfield, S. R.; Gosztola, D. J.; Svec,
6
5-69
ronylnitroxides attached to polycyclic aromatic molecules.
W. A.; Wasielewski, M. R. J. Am. Chem. Soc. 1995, 117, 8055–
8
056.
In many of these systems there is an ambiguity as to whether
the initial triplet state of the chromophore arises from normal
spin-orbit-induced intersystem crossing (SO-ISC) or whether
it results from a direct interaction of the radical spin with the
lowest excited singlet state of the chromophore. Quenching of
fluorescent chromophores by stable radicals has been extensively
studied in a wide variety of noncovalent and flexibly linked
(
24) Carbonera, D.; DiValentin, M.; Corvaja, C.; Agostini, G.; Giacometti,
G.; Liddell, P. A.; Kuciauskas, D.; Moore, A. L.; Moore, T. A.; Gust,
D. J. Am. Chem. Soc. 1998, 120, 4398–4405.
(
25) Weiss, E. A.; Ratner, M. A.; Wasielewski, M. R. J. Phys. Chem. A
2
003, 107, 3639–3647.
(
26) Weiss, E. A.; Ahrens, M. J.; Sinks, L. E.; Gusev, A. V.; Ratner,
M. A.; Wasielewski, M. R. J. Am. Chem. Soc. 2004, 126, 5577–
5
584.
7
0-82
(
27) Dance, Z. E. X.; Mi, Q. X.; McCamant, D. W.; Ahrens, M. J.; Ratner,
covalent systems.
However, there are very few examples
M. A.; Wasielewski, M. R. J. Phys. Chem. B 2006, 110, 25163–
of rigid systems in which the structural and electronic basis of
2
5173.
(
(
(
28) Chernick, E. T.; Mi, Q.; Vega, A. M.; Lockard, J. V.; Ratner, M. A.;
Wasielewski, M. R. J. Phys. Chem. B 2007, 111, 6728–6737.
(56) Fujisawa, J.; Ohba, Y.; Yamauchi, S. Chem. Phys. Lett. 1998, 294,
248–254.
29) Mi, Q.; Chernick, E. T.; McCamant, D. W.; Weiss, E. A.; Ratner,
M. A.; Wasielewski, M. R. J. Phys. Chem. A 2006, 110, 7323–7333.
30) Chernick, E. T.; Mi, Q.; Kelley, R. F.; Weiss, E. A.; Jones, B. A.;
Marks, T. J.; Ratner, M. A.; Wasielewski, M. R. J. Am. Chem. Soc.
(57) Fujisawa, J.; Ishii, K.; Ohba, Y.; Yamauchi, S.; Fuhs, M.; M o¨ bius,
K. J. Phys. Chem. A 1999, 103, 3138.
(58) Tarasov, V. F.; Saiful, I. S. M.; Iwasaki, Y.; Ohba, Y.; Savitsky, A.;
M o¨ bius, K.; Yamauchi, S. Appl. Magn. Reson. 2006, 30, 619–636.
(59) Tarasov, V. F.; Saiful, I. S. M.; Ohba, Y.; Takahashi, K.; Yamauchi,
S. Spectrochim. Acta, Part A 2008, 69, 1327–1330.
(60) Ishii, K.; Hirose, Y.; Fujitsuka, H.; Ito, O.; Kobayashi, N. J. Am.
Chem. Soc. 2001, 123, 702–708.
2
006, 128, 4356–4364.
31) Ishii, K.; Hirose, Y.; Kobayashi, N. J. Phys. Chem. A 1999, 103,
986–1990.
32) Mori, Y.; Sakaguchi, Y.; Hayashi, H. J. Phys. Chem. A 2000, 104,
896–4905.
33) Mori, Y.; Sakaguchi, Y.; Hayashi, H. Bull. Chem. Soc. Jpn. 2001,
(
(
(
(
(
(
(
1
4
(61) Takeuchi, S.; Ishii, K.; Kobayashi, N. J. Phys. Chem. A 2004, 108,
3276–3280.
7
4, 293–304.
34) Vlassiouk, I.; Smirnov, S.; Kutzki, O.; Wedel, M.; Montforts, F.-P.
J. Phys. Chem. B 2002, 1-6, 8657–8666.
(62) Corvaja, C.; Franco, L.; Mazzoni, M. Appl. Magn. Reson. 2001, 20,
71–83.
35) Buchachenko, A. L.; Berdinsky, V. L. Chem. ReV. 2002, 102, 603–
(63) Corvaja, C.; Maggini, M.; Prato, M.; Scorrano, G.; Venzin, M. J. Am.
Chem. Soc. 1995, 117, 8857–8858.
6
12.
36) Prisner, T.; Dobbert, O.; Dinse, K. P.; van Willigen, H. J. Am. Chem.
Soc. 1988, 110, 1622–1623.
(64) Conti, F.; Corvaja, C.; Toffoletti, A.; Mizuochi, N.; Ohba, Y.;
Yamauchi, S.; Maggini, M. J. Phys. Chem. A 2000, 104, 4962–4967.
(65) Teki, Y.; Tamekuni, H.; Takeuchi, J.; Miura, Y. Angew. Chem., Int.
Ed. 2006, 45, 4666–4670.
37) Angerhofer, A.; Toporowicz, M.; Bowman, M. K.; Norris, J. R.;
Levanon, H. J. Phys. Chem. 1988, 92, 7164–7166.
(
38) Lahti, P. M., Ed.; Magnetic Properties of Organic Materials; Dekker:
(66) Teki, Y.; Kimura, M.; Narimatsu, S.; Ohara, K.; Mukai, K. Bull.
Chem. Soc. Jpn. 2004, 77, 95–99.
New York, 1999.
(
39) Sugawara, T.; Sakurai, H.; Izuoka, A., Eds. Electronically controllable
high spin systems realized by spin-polarized donors; Gordon and
Breach: Amsterdam, 2001.
(67) Teki, Y.; Nakatsuji, M.; Miura, Y. Mol. Phys. 2002, 100, 1385–
1394.
(68) Teki, Y.; Miyamoto, S.; Nakatsuji, M.; Miura, Y. J. Am. Chem. Soc.
2001, 123, 294–305.
(
(
(
40) Miller, J. S.; Manson, J. L. Acc. Chem. Res. 2001, 34, 563–570.
41) Rajca, A. Chem. Eur. J. 2002, 8, 4834–4841.
(69) Teki, Y.; Miyamoto, S.; Iimura, K.; Nakatsuji, M.; Miura, Y. J. Am.
Chem. Soc. 2000, 122, 984–985.
42) Itkis, M. E.; Chi, X.; Cordes, A. W.; Haddon, R. C. Science 2002,
2
96, 1443–1445.
(70) Blough, N. V.; Simpson, D. J. J. Am. Chem. Soc. 1988, 110, 1915–
1917.
(
43) Bl a¨ ttler, C.; Jent, F.; Paul, H. Chem. Phys. Lett. 1990, 166, 375–
3
80.
(71) Chattopadhyay, S. K.; Das, P. K.; Hug, G. L. J. Am. Chem. Soc.
1983, 105, 6205–6210.
(44) Jenks, W. S.; Turro, N. J. Res. Chem. Intermed. 1990, 13, 237.
(45) Kawai, A.; Okutsu, T.; Obi, K. J. Phys. Chem. 1991, 95, 9130–9134.
(46) Kawai, A.; Obi, K. J. Phys. Chem. 1992, 96, 52–56.
(47) Turro, N. J.; Khudyakov, I. V.; Bossmann, S. H.; Dwyer, D. W. J.
Phys. Chem. 1993, 97, 1138–1146.
(72) Green, J. A.; Singer, L. A.; Parks, J. H. J. Chem. Phys. 1973, 58,
2690–2695.
(73) Green, S. A.; Simpson, D. J.; Zhou, G.; Ho, P. S.; Blough, N. V.
J. Am. Chem. Soc. 1990, 112, 7337–7346.
(
(
(
(
(
(
(
(
48) Goudsmit, G. H.; Paul, H.; Shushin, A. I. J. Phys. Chem. 1993, 97,
(74) Herbelin, S. E.; Blough, N. V. J. Phys. Chem. B 1998, 102, 8170–
8176.
1
3243–13249.
49) Corvaja, C.; Franco, L.; Toffoletti, A. Appl. Magn. Reson. 1994, 7,
(75) Hrdlovic, P.; Chmela, S.; Sarakha, M.; Lacoste, J. J. Photochem.
Photobiol., A 2001, 138, 95–109.
2
57–269.
50) Fujisawa, J.; Ishii, K.; Ohba, Y.; Iwaizumi, M.; Yamauchi, S. J. Phys.
Chem. 1995, 99, 17082–17084.
(76) Karpiuk, J.; Grabowski, Z. R. Chem. Phys. Lett. 1989, 160, 451–
456.
51) Hugerat, M.; van der Est, A.; Ojadi, E.; Biczok, L.; Linschitz, H.;
Levanon, H.; Stehlik, D. J. Phys. Chem. 1996, 100, 495–500.
52) Regev, A.; Galili, T.; Levanon, H. J. Phys. Chem. 1996, 100, 18502–
(77) Kollar, J.; Hrdlovic, P.; Chmela, S.; Sarakha, M.; Guyot, G. J.
Photochem. Photobiol., A 2005, 170, 151–159.
(78) Kuz’min, V. A.; Tatikolov, A. S. Chem. Phys. Lett. 1977, 51, 45–
47.
1
8510.
53) Ishii, K.; Fujisawa, J.; Ohba, Y.; Yamauchi, S. J. Am. Chem. Soc.
(79) Likhtenstein, G. I.; Ishii, K.; Nakatsuji, S. i. Photochem. Photobiol.
2007, 83, 871–881.
1
996, 118, 13079–13080.
54) Fujisawa, J.; Ishii, K.; Ohba, Y.; Yamauchi, S.; Fuhs, M.; M o¨ bius,
K. J. Phys. Chem. A 1997, 101, 5869–5876.
(80) Medvedeva, N.; Martin, V. V.; Weis, A. L.; Likhtenshten, G. I. J.
Photochem. Photobiol., A 2004, 163, 45–51.
55) Fujisawa, J.; Ohba, Y.; Yamauchi, S. J. Phys. Chem. A 1997, 101,
(81) Sartori, E.; Toffoletti, A.; Corvaja, C.; Moroder, L.; Formaggio, F.;
Toniolo, C. Chem. Phys. Lett. 2004, 385, 362–367.
4
34–439.
J. AM. CHEM. SOC. 9 VOL. 131, NO. 10, 2009 3701