Scheme 1. Enantioselective Cyclopropanation
8
cyclohepta[b]indole systems exist. Our method tolerates
rF ei ag ru rr ae n g2 e. mC eh ni rt a. lity transfer in the indoleÀvinylcyclopropane
a broad range of substituents at different positions of
the seven-membered ring, making it a robust and gen-
eral method to synthesize this structure motif (Figure 2).
Since the key step constitutes a [3,3]-sigmatropic re-
described, with IC50 values of 60À100 nM represent-
ing a 500-fold improvement over previously reported
inhibitors.
9
arrangement, each substituent can be introduced stereo-
specifically, which is not possible with any other method
available to date. Our strategy relies upon a divinylcy-
2
b
This compound contains a single stereocenter and so
far has only been synthesized as a racemate, which is
separated by chiral HPLC. The two enantiomers differ
10
clopropane rearrangement (DVCPR) involving the
indole moiety as a 2π-unit. This substrate type has pre-
viously not been reported in a DVCPR reaction, thus
drastically in their biological potency, with (S)-4 (IC50
=
=
6
2
3 nM) being 365-fold more potent than (R)-4 (IC50
3 μM), rendering an enantioselective access especial-
11
extending the scope of this reaction. This reaction not
only assembles the seven-membered ring, but due to or-
ly to the more potent (S)-4 enantiomer utmost impor-
2
tant.
12
bital symmetry considerations, chirality is transferred
b
stereospecifically from the cyclopropane ring to the
benzylic positions, which are very labile and therefore
difficult to access in a stereoselective way by other
methods (displayed in Figure 2).
Herein, we present an efficient, enantioselective, and
gram-scale synthesis of SIRT1-inhibitor IV (4). In contrast
2
b
to the established racemic route, which requires indivi-
dual planning for derivative synthesis, our synthetic access
is modular and therefore does not require additional steps
or a change in synthetic planning to allow derivatization.
This is crucial for library synthesis and rapid testing of
a large variety of compounds. Our synthetic route rests
upon a Wittig reaction/divinylcyclopropane rearrange-
The rearrangement can be carried out with a 2- or a
3
-indoleÀvinylcyclopropane 9 or 12. With both substrates,
dearomatization of the indole core occurs in the course of
the rearrangement, but only the 2-indoleÀvinylcyclopropane
product rearomatizes spontaneously. The rearrangement
temperatures vary with the substituents from 20 to 140 °C
7
ment cascade. To date, a few examples of racemic and
only one example of an enantioselective synthesis of
(see the Supporting Information). The transfer of chi-
rality for both 2- and 3-indoleÀvinylcyclopropanes 9
and 12 is depicted in Figure 2. In the case of 3-indoleÀ
vinylcyclopropanes 9 (series A transition state 10), it can
(
7) For application to terpenoids, see: (a) Pantke-B o€ cker, S.Pohnert,
G.; Fischer-Lui, I.; Boland, W. Tetrahedron 1995, 51, 7927. For recent
application to indole-type compounds, see: (b) Schwarzer, D. D.; Gritsch,
P. J.; Gaich, T. Angew. Chem. Int. Ed. 2012, 51, 11514.
2
be clearly seen that R and the indole C2-proton will
adopt the cis-stereorelationship on the seven-membered
ring. The relative configuration is therefore governed by
the geometry of the double bond; hence, a (Z)-double
bond will give the cis-compound, whereas the (E)-double
bond will give the trans-compound. The same holds true
(8) For the enantioselective example, see: (a) Loh, C. C. J.; Badorrek,
J.; Raabe, G.; Enders, D. Chem.;Eur. J. 2011, 17, 13409. For racemic
syntheses, see: (b) Anderson, A. G., Jr.; Richards, H. F.; Haddock, R. D.
Org. Prep. Proced. Int. 1989, 21, 649. (c) Arcadi, A.; Bianchi, G.;
Chiarini, M.; D’Anniballe, G.; Marinelli, F. Synlett 2004, 944. (d) Butin,
A. V.; Kostyukova, N. O.; Tsiunchik, F. A.; Lysenko, S. A.; Trushkov,
I. V. Chem. Heterocycl. Compd. (N.Y., NY, U.S.) 2010, 46, 117. (e)
Butin, A. V.; Kostyukova, O. N.; Tsiunchik, F. A.; Uchuskin, M. G.;
Serdyuk, O. V.; Trushkov, I. V. J. Heterocycl. Chem. 2011, 48, 684. (f)
Falke, H.; Bumiller, K.; Harbig, S.; Masch, A.; Wobbe, J.; Kunick, C.
Molbank 2011, M737. (g) Han, X.; Li, H.; Hughes, R. P.; Wu, J. Angew.
Chem., Int. Ed. 2012, 51, 10390. (h) Joseph, B.; Alagille, D.; Merour,
J.-Y.; Leonce, S. Chem. Pharm. Bull. 2000, 48, 1872. (i) Joseph, B.;
Alagille, D.; Rousseau, C.; Merour, J.-Y. Tetrahedron 1999, 55, 4341. (j)
Joseph, B.; Cornec, O.; Merour, J.-Y. Tetrahedron 1998, 54, 7765. (k)
Kinnick, M. D.; Mihelich, E. D.; Morin, J. M., Jr.; Sall, D. J.; Sawyer,
J. S.; WO 2003/016277A1, July 29, 2003; (l) Kupai, K.; Banoczi, G.;
Hornyanszky, G.; Kolonits, P.; Novak, L. Cent. Eur. J. Chem. 2012, 10, 91.
(9) (a) Hill, R. K. Asymm. Synth. 1984, 3, 503. (b) Ito, H.; Taguchi, T.
Chem. Soc. Rev. 1999, 28, 43. (c) Kazmaier, U. J. Indian Chem. Soc. 1999,
7
6, 631. (d) Langlois, Y. Claisen Rearrange. 2007, 301. (e) Nubbemeyer,
U. Synthesis 2003, 961.
(10) (a) Davies, H. M. L. Adv. Cycloaddit. 1999, 5, 119. (b) Hudlicky,
T.; Fan, R.; Reed, J. W.; Gadamasetti, K. G. Org. React. (N.Y.) 1992,
41, 1. (c) Piers, E.; Burmeister, M. S.; Reissig, H. U. Can. J. Chem. 1986,
64, 180. (d) Sarel, S. Acc. Chem. Res. 1978, 11, 204.
(11) For similar examples, see: (a) Fukuyama, T.; Liu, G. J. Am.
Chem. Soc. 1996, 118, 7426. (b) Shimokawa, J.; Harada, T.-A.; Yokoshima,
S.; Fukuyama, T. J. Am. Chem. Soc. 2011, 133, 17634. (c) Davies, H. M. L.;
Doan, B. D. J. Org. Chem. 1998, 63, 657. (d) Wender, P. A.; Eissenstat,
M. A.; Filosa, M. P. J. Am. Chem. Soc. 1979, 68, 2196.
(m) Nishikimi, Y.; Fukushi, H.; Miki, H.; WO 2005/118587, Jun 1, 2005.
(
3
n) Shu, D.; Song, W.; Li, X.; Tang, W. Angew. Chem., Int. Ed. 2013, 52,
237. (o) Yamuna, E.; Yurcho, A.; Sovesky, R. J.; Smith, P. M.; Zeller,
€
M.; Prasad, K. J. R. Synth. Commun. 2011, 41, 3351.
(12) Ozkan, I.; Zora, M. J. Org. Chem. 2003, 68, 9635.
Org. Lett., Vol. 15, No. 21, 2013
5473