polymers are of interest and thus trifluoroethyl methacrylate
TFEMA) was successfully conjugated to the cleaved poly[MA]
to exemplify this. In addition to the conventional NMR analysis,
8 L. Barner, C. Barner-Kowollik, T. P. Davis and M. H. Stenzel,
Aust. J. Chem., 2004, 57, 19–24.
(
9
H. Kakwere and S. Perrier, J. Polym. Sci., Part A: Polym. Chem.,
009, 47, 6396–6408.
0 H. Willcock and R. O’Reilly, Polym. Chem., 2010, 1, 149–157.
11 C. J. Hawker, A. W. Bosman and E. Harth, Chem. Rev., 2001, 101,
661–3688.
2
1
9
F spectra were also obtained, showing that different species to
1
the starting materials were present in the conjugate, providing
further evidence for the conjugate species. Phosphate functional
polymers are of importance as dispersants and as surfac-
tants and thus EGMAP was conjugated to yield phosphate
3
1
2 M. A. Gauthier, M. I. Gibson and H.-A. Klok, Angew. Chem., Int.
Ed., 2009, 48, 48–58.
13 C. K. Hartmuth, M. G. Finn and K. B. Sharpless, Angew. Chem.,
Int. Ed., 2001, 40, 2004–2021.
w n
terminated polymers with narrow M /M distributions.
1
4 L. Nurmi, J. Lindqvist, R. Randev, J. Syrett and D. M. Haddleton,
Chem. Commun., 2009, 2727–2729.
Styrene is much less prone to this type of Michael addition
due to lower electron withdrawing from the aryl group and
an attempt to conjugate styrene by the same method was
unsuccessful as expected and is reported for completeness.
This result is in line with previous mechanistic studies that
report that the Michael acceptor must be suitably activated for
1
5 J. Geng, G. Mantovani, L. Tao, J. Nicolas, G. Chen, R. Wallis,
D. A. Mitchell, B. R. G. Johnson, S. D. Evans and
D. M. Haddleton, J. Am. Chem. Soc., 2007, 129, 15156–15163.
6 C. E. Hoyle and C. N. Bowman, Angew. Chem., Int. Ed., 2010, 49,
1
1
540–1573.
17 C. E. Hoyle, A. B. Lowe and C. N. Bowman, Chem. Soc. Rev.,
2010, 39, 1355–1387.
3
7
nucleophilic attack to occur. Thus, a sufficiently good electron
withdrawing group on the vinyl group is required for the
Michael type addition to proceed. It is also possible to re-oxidise
the thiol polymers back to a disulfide containing polymer in
1
8 M. W. Jones, G. Mantovani, S. M. Ryan, X. X. Wang,
D. J. Brayden and D. M. Haddleton, Chem. Commun., 2009,
5
19 A. Lowe, Polym. Chem., 2010, 1, 17–36.
272–5274.
2
0 G. Li, R. Randev, A. Soeriyadi, G. Rees, C. Boyer, Z. Tong,
T. Davis, C. Becer and D. Haddleton, Polym. Chem., 2010, DOI:
3
near quantitative yield using FeCl as an oxidant as seen by
1
both H NMR and GPC, see ESI.w
1
21 M. R. Whittaker, Y.-K. Goh, H. Gemici, T. M. Legge, S. Perrier
0.1039/c1030py00100g.
Click chemistry has enabled a simple route to novel post-
polymerisation modification techniques. This allows for facile
introduction of functionality into polymers for further modifi-
cation (HEA and propargyl acrylate) or to introduce a specific
functionality e.g. TFEMA and EGMAP. This can be applied
to any disulfide-containing polymer, followed by subsequent
modification with any (meth)acrylate or acrylamide allowing
for a new type of post-polymerisation modification.
and M. J. Monteiro, Macromolecules, 2006, 39, 9028–9034.
2 Y. K. Chong, J. Krstina, T. P. T. Le, G. Moad, A. Postma,
E. Rizzardo and S. H. Thang, Macromolecules, 2003, 36,
2
2256–2272.
23 R. T. A. Mayadunne, E. Rizzardo, J. Chiefari, J. Krstina,
G. Moad, A. Postma and S. H. Thang, Macromolecules, 2000,
3
3, 243–245.
4 X. P. Qiu and F. M. Winnik, Macromol. Rapid Commun., 2006, 27,
648–1653.
2
1
We thank Lubrizol Ltd (JAS) and Warwick Effect Polymers
25 M. Dietrich, M. Glassner, T. Gruendling, C. Schmid,
J. Falkenhagen and C. Barner-Kowollik, Polym. Chem., 2010, 1,
(
MWJ) for funding. The SEC equipment used in this research
6
6 M. Li, P. De, H. Li and B. S. Sumerlin, Polym. Chem., 2010, 1,
34–644.
was obtained through Birmingham Science City: (AM 2), with
support from Advantage West Midlands and part funded by
the European Regional Development Fund.
2
854–859.
27 J. D. Flores, J. Shin, C. E. Hoyle and C. L. McCormick, Polym.
Chem., 2010, 1, 213–220.
2
8 C. Boyer, A. Granville, T. P. Davis and V. Bulmus, J. Polym. Sci.,
Part A: Polym. Chem., 2009, 47, 3773–3794.
Notes and references
1
2
3
4
J.-S. Wang and K. Matyjaszewski, J. Am. Chem. Soc., 1995, 117,
614–5615.
M. Kato, M. Kamigaito, M. Sawamoto and T. Higashimura,
Macromolecules, 1995, 28, 1721–1723.
D. M. Haddleton, C. B. Jasieczek, M. J. Hannon and
A. J. Shooter, Macromolecules, 1997, 30, 2190–2193.
D. M. Haddleton, M. C. Crossman, B. H. Dana, D. J. Duncalf,
A. M. Heming, D. Kukulj and A. J. Shooter, Macromolecules,
29 N. V. Tsarevsky and K. Matyjaszewski, Macromolecules, 2002, 35,
9009–9014.
30 Y. Li and S. P. Armes, Macromolecules, 2005, 38, 8155–8162.
31 N. V. Tsarevsky and K. Matyjaszewski, Macromolecules, 2005, 38,
3087–3092.
32 B. M. Rosen and V. Percec, Chem. Rev., 2009, 109, 5069–5119.
33 M. E. Levere, I. Willoughby, S. O’Donohue, A. d. Cuendias,
A. J. Grice, C. Fidge, C. R. Becer and D. M. Haddleton, Polym.
Chem., 2010, 1, 1086–1094.
5
1999, 32, 2110–2119.
5
6
V. Percec, T. Guliashvili, J. S. Ladislaw, A. Wistrand,
A. Stjerndahl, M. J. Sienkowska, M. J. Monteiro and S. Sahoo,
J. Am. Chem. Soc., 2006, 128, 14156–14165.
J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P.
T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad,
E. Rizzardo and S. H. Thang, Macromolecules, 1998, 31,
5559–5562.
C. Boyer, V. Bulmus, T. P. Davis, V. Ladmiral, J. Q. Liu and
S. Perrier, Chem. Rev., 2009, 109, 5402–5436.
34 J. W. Chan, C. E. Hoyle and A. B. Lowe, J. Am. Chem. Soc., 2009,
131, 5751–5753.
35 J. W. Chan, C. E. Hoyle, A. B. Lowe and M. Bowman, Macro-
molecules, 2010, 43, 6381–6388.
36 A. J. Limer, A. K. Rullay, V. San Miguel, C. Peinado, S. Keely,
E. Fitzpatrick, S. D. Carrington, D. Brayden and
D. M. Haddleton, React. Funct. Polym., 2006, 66, 51–64.
37 B. D. Mather, K. Viswanathan, K. M. Miller and T. E. Long,
Prog. Polym. Sci., 2006, 31, 487–531.
7
This journal is c The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 7181–7183 7183