The Journal of Organic Chemistry
Note
mg, 0.07 mmol) were stirred in distilled MeOH (0.5 mL), and three
molecular sieves were added. The mixture was cooled to 0 °C, and
piperidine (25.0 μL, 0.25 mmol) was added. After being stirred for 10
min at 0 °C, the mixture was slowly warmed to rt and stirring
continued for 28 h. Usual workup and flash chromatography (100%
(14) Synthesis of natural rubrolides: (a) Kotora, M.; Negishi, E.
Synthesis 1997, 121−128. (b) Boukouvalas, J.; Lachance, N.; Ouellet,
M.; Trudeau, M. Tetrahedron Lett. 1998, 39, 7665−7668. (c) Bellina,
F.; Anselmi, C.; Viel, S.; Mannina, L.; Rossi, R. Tetrahedron 2001, 57,
9997−10007. (d) Bellina, F.; Anselmi, C.; Rossi, R. Tetrahedron Lett.
2002, 43, 2023−2027. (e) Kar, A.; Argade, N. P. Synthesis 2005,
2284−2286. (f) Chavan, S. P.; Pathak, A. B.; Pandey, A.; Kalkote, U. R.
Synth. Commun. 2007, 37, 4253−4263. (g) Cacchi, S.; Fabrizi, G.;
Goggiamani, A.; Sferrazza, A. Synlett 2009, 1277−1280. (h) Boukou-
valas, J.; McCann, L. C. Tetrahedron Lett. 2010, 51, 4636−4639.
(i) Tale, N. P.; Shelke, A. V.; Tiwari, G. B.; Thorat, P. B.; Karade, N.
N. Helv. Chim. Acta 2012, 95, 852−857.
hexanes to 60:38:1:1 hexanes/Et O/MeOH/AcOH) afforded cadio-
2
lide D (36.5 mg, 73%) as an orange solid: mp 244−245 °C dec; IR-
ATR (ZnSe, neat) 3190, 3078, 2923, 1738, 1538, 1371, 1292, 1148,
−
1 1
7
8
41 cm ; H NMR (500 MHz, (CD ) CO) 8.14 (d, J = 1.9 Hz, 1H)
3 2
.05 (s, 2H) 7.84 (dd, J = 8.6, 1.8 Hz, 1H) 7.70 (s, 2H) 7.14 (d, J = 8.6
Hz, 1H) 6.50 (s, 1H); C NMR (125 MHz, (CD ) CO) 186.0, 166.1,
13
3
2
1
1
56.7, 156.5, 156.4, 153.4, 147.0, 137.0, 134.8, 134.2, 133.1, 131.4,
27.6, 124.1, 123.8, 117.7, 116.8, 111.7, 111.4, 111.0; HRMS (ESI-
(15) Select syntheses of rubrolide analogues: (a) Barbosa, L. C. A.;
+
TOF) m/z [M + H] calcd for C H O Br 794.6510, found
Maltha, C. R. A.; Lage, M. R.; Barcelos, R. C.; Dona,
M.; Forlani, G. J. Agric. Food Chem. 2012, 60, 10555−10563.
b) Pereira, U. A.; Barbosa, L. C. A.; Maltha, C. R. A.; Demuner, A.
J.; Masood, M. A.; Pimenta, A. L. Eur. J. Med. Chem. 2014, 82, 127−
38. (c) Bellina, F.; Anselmi, C.; Martina, F.; Rossi, R. Eur. J. Org.
̀
A.; Varneiro, J. W.
24
12
6
5
794.6507.
(
ASSOCIATED CONTENT
Supporting Information
■
1
*
S
Chem. 2003, 2290−2302. (d) Zhang, R.; Iskander, G.; da Silva, P.;
Chan, D.; Vignevich, V.; Nguyen, V.; Bhadbhade, M. M.; Black, D. S.;
Kumar, N. Tetrahedron 2011, 67, 3010−3016.
Proton and carbon NMR spectra of all isolated compounds,
(16) Boukouvalas, J.; Pouliot, M. Synlett 2005, 343−345.
(
́
17) Peixoto, P. A.; Boulange, A.; Leleu, S.; Franck, X. Eur. J. Org.
Chem. 2013, 3316−3327.
AUTHOR INFORMATION
■
(18) Ynone 13 was prepared in 96% yield by Pd-catalyzed coupling
of commercial p-MeOPhCOCl and p-MeOPhCCH as previously
described: (a) Liang, J.; Hu, W.; Tao, P.; Jia, Y. J. Org. Chem. 2013, 78,
*
5
810−5815. (b) Roy, S.; Davydova, M. P.; Pal, R.; Gilmore, K.;
Notes
Tolstikov, G. A.; Vasilevsky, S. F.; Alabugin, I. V. J. Org. Chem. 2011,
The authors declare no competing financial interest.
7
9
6, 7482−7490. (c) Waldo, J. P.; Larock, R. C. J. Org. Chem. 2007, 72,
643−9647. See also: (d) Kim, W.; Park, K.; Park, A.; Choe, J.; Lee, S.
ACKNOWLEDGMENTS
Org. Lett. 2013, 15, 1654−1657.
(
■
19) Alternatively, oxazole 14 can be inexpensively prepared on a
We are grateful to the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the FRQNT-
large scale from d,l-alanine: Dean, A.; Ferlin, M. G.; Brun, P.;
Castagliuolo, I.; Badocco, D.; Pastore, P.; Venzo, A.; Bombi, G. G.; Di
Marco, V. B. Dalton Trans. 2008, 1689−1697.
́
Quebec Centre in Green Chemistry and Catalysis (CGCC) for
financial support. We also thank NSERC-CGS for a doctoral
scholarship to C.T.
(20) (a) Boukouvalas, J.; Loach, R. P. Org. Lett. 2013, 15, 4912−
4914. (b) Boukouvalas, J.; Thibault, C.; Loach, R. P. Synlett 2014, 25,
139−2142.
21) (a) Grigg, R.; Jackson, J. L. J. Chem. Soc. C 1970, 552−556.
2
(
REFERENCES
■
(
b) Levin, J. I.; Laakso, L. M. Oxazole Diels−Alder Reactions. In
(
Oxazoles: Synthesis, Reactions, and Spectroscopy; Palmer, D. C., Ed.;
Wiley-VCH: Weinheim, 2003; Part A, Vol. 60, Chapter 3, pp 417−
4
72. (c) For the use of such a process on a multikilogram scale, see:
(
2) (a) Hede, K. Nature 2014, 509, S2−S3. (b) Jarvis, L. M. Chem.
Hutton, J.; Potts, B.; Southern, P. F. Synth. Commun. 1979, 9, 789−
97.
22) Kumar, L.; Sharma, V.; Mahajan, T.; Agarwal, D. D. Org. Process
Res. Dev. 2010, 14, 174−179.
23) Boukouvalas, J.; Beltran
F.; Pouliot, M. Synlett 2007, 219−222.
Eng. News 2014, 92 (24), 9−14.
7
(
(
(
3) Kobayashi, S. D.; DeLeo, F. R. Nature Med. 2011, 17, 168−169.
4) Podoll, J. D.; Liu, Y.; Chang, L.; Walls, S.; Wang, W.; Wang, X.
Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 15573−15578.
(
́ ̂ ́
, P. P.; Lachance, N.; Cote, S.; Maltais,
(
(
5) Kirst, H. A. Expert Opin. Drug Discov. 2013, 8, 479−493.
6) (a) Cui, L.; Tominaga, E.; Neoh, H.; Hiramatsu, K. Antimicrob.
(
24) Cf. pKa ≈ 12 (water) for β-(p-methylsulfonylphenyl)-α-
Agents Chemother. 2006, 50, 1079−1082. (b) Gardete, S.; Tomasz, A. J.
phenylbutenolide versus pKa ≈ 18.8 (DMSO) for unsubstituted
butenolide: (a) Reddy, L. R.; Corey, E. J. Tetrahedron Lett. 2005, 46,
Clin. Invest. 2014, 124, 2836−2840.
(
7) Smith, C. J.; Hettich, R. L.; Jompa, J.; Tahir, A.; Buchanan, M. V.;
9
4
(
27−929. (b) Bordwell, F. G.; Fried, H. E. J. Org. Chem. 1991, 56,
218−4223.
Ireland, C. M. J. Org. Chem. 1998, 63, 4147−4150.
8) Wang, W.; Kim, H.; Nam, S.-J.; Rho, B. J.; Kang, H. J. Nat. Prod.
012, 75, 2049−2054.
9) Won, T. H.; Jeon, J.-e.; Kim, S.-H.; Lee, S.-H.; Rho, B. J.; Oh, D.-
C.; Oh, K.-B.; Shin, J. J. Nat. Prod. 2012, 75, 2055−2061.
10) Ahn, C.-H.; Won, T. H.; Kim, H.; Shin, J.; Oh, K.-B. Bioorg.
Med. Chem. Lett. 2013, 23, 4099−4101.
11) Smitha, D.; Kumar, M. M. K.; Ramana, H.; Rao, D. V. Nat. Prod.
Res. 2014, 28, 12−17.
12) (a) Miao, S.; Andersen, R. J. J. Org. Chem. 1991, 56, 6275−6280.
b) Ortega, M. J.; Zubía, E.; Ocana, J. M.; Naranjo, S.; Salva, J.
Tetrahedron 2000, 56, 3963−3967.
13) (a) Sun, H.; Huang, H.; Zhang, D.; Feng, E.; Qian, W.; Zhang,
L.; Chen, K.; Liu, H. Adv. Synth. Catal. 2011, 353, 1413−1419.
b) Park, K. H.; Kim, S. Y.; Chung, Y. K. Org. Biomol. Chem. 2005, 3,
95−398.
(
2
(
25) In general, condensation rates closely correlate with the pK ’s of
a
Knoevenagel donors; see, for example: (a) Li, W.; Fedosov, S. N.; Tan,
T.; Xu, X.; Guo, Z. ACS Catal. 2014, 4, 3294−3300. (b) Burgoyne, A.
R.; Meijboom, R. Catal. Lett. 2013, 143, 563−571. (c) Kulchat, S.;
Meguellati, K.; Lehn, J.-M. Helv. Chim. Acta 2014, 97, 1219−1236.
(
(26) The solid-state structure of synthetic 1 (cocrystallized with two
(
molecules of water) further reveals that the brominated aromatic rings
undergo intra- and intermolecular π-stacking; see the Supporting
Information for details.
(
(
̃
́
(
(
3
6
84
dx.doi.org/10.1021/jo502503w | J. Org. Chem. 2015, 80, 681−684