Communications
2000, 41, 811 – 814; f) A. M. Caporusso, S. Filippi, F. Barontini, P.
Salvadori, Tetrahedron Lett. 2000, 41, 1227 – 1230.
have demonstrated for the first time that bromoallenes can
act as allyl dication equivalents even in the absence of
palladium(0), and that the intramolecular reaction with two
nucleophiles enables the direct formation of bicycles by
tandem cyclization. These cyclizations are extremely useful
for the synthesis of bicyclic sulfamides and could extend the
potential application of sulfamides as new pharmaceutically
useful agents in medicinal chemistry.
[5] a) G. Mꢂrkl, P. Attenberger, J. Kellner, Tetrahedron Lett. 1988,
29, 3651 – 3654; b) T. Gillmann, T. Hꢃlsen, W. Massa, S. Wocadlo,
Synlett 1995, 1257 – 1259; c) R. W. Saalfrank, M. Haubner, C.
Deutscher, W. Bauer, T. Clark, J. Org. Chem. 1999, 64, 6166 –
6168.
[6] a) J. A. Marshall, N. D. Adams, J. Org. Chem. 1997, 62, 8976 –
8977; b) S. Ma, S. Yu, S. Yin, J. Org. Chem. 2003, 68, 8996 – 9002.
[7] a) J. Hultꢄn, N. M. Bonham, U. Nillroth, T. Hansson, G.
Zuccarello, A. Bouzide, J. ꢅqvist, B. Classon, U. H. Danielson,
A. Karlꢄn, I. Kvarnstrꢆm, B. Samuelsson, A. Hallberg, J. Med.
Chem. 1997, 40, 885 – 897; b) K. Bꢂckbro, S. Lꢆwgren, K.
ꢇsterlund, J. Atepo, T. Unge, J. Hultꢄn, N. M. Bonham, W.
Schaal, A. Karlꢄn, A. Hallberg, J. Med. Chem. 1997, 40, 898 –
902; c) J. Hultꢄn, H. O. Andersson, W. Schaal, U. H. Danielson,
B. Classon, I. Kvarnstrꢆm, A. Karlꢄn, T. Unge, B. Samuelsson,
A. Hallberg, J. Med. Chem. 1999, 42, 4054 – 4061; d) W. Schaal,
A. Karlsson, G. Ahlsꢄn, J. Lindberg, H. O. Andersson, U. H.
Danielson, B. Classon, T. Unge, B. Samuelsson, J. Hultꢄn, A.
Hallberg, A. Karlꢄn, J. Med. Chem. 2001, 44, 155 – 169; e) P.-O.
Markgren, W. Schaal, M. Hꢂmꢂlꢂinen, A. Karlꢄn, A. Hallberg,
B. Samuelsson, U. H. Danielson, J. Med. Chem. 2002, 45, 5430 –
5439.
[8] a) W. C. Groutas, R. Kuang, S. Ruan, J. B. Epp, R. Venkatara-
man, T. M. Truong, Bioorg. Med. Chem. 1998, 6, 661 – 671;
b) W. C. Groutas, N. M. Schechter, S. He, H. Yu, P. Huang, J. Tu,
Bioorg. Med. Chem. Lett. 1999, 9, 2199 – 2204; c) R. Kuang, J. B.
Epp, S. Ruan, H. Yu, P. Huang, R. Venkataraman, S. He, J. Tu,
N. M. Schechter, J. Turbov, C. J. Froelich, W. C. Groutas, J. Am.
Chem. Soc. 1999, 121, 8128 – 8129; d) R. Kuang, J. B. Epp, S.
Ruan, L. S. Chong, R. Venkataraman, J. Tu, S. He, T. M. Truong,
W. C. Groutas, Bioorg. Med. Chem. 2000, 8, 1005 – 1016.
[9] J. L. Castro, R. Baker, A. R. Guiblin, S. C. Hobbs, M. R. Jenkins,
M. G. N. Russell, M. S. Beer, J. A. Stanton, K. Scholey, R. J.
Hargreaves, M. I. Graham, V. G. Matassa, J. Med. Chem. 1994,
37, 3023 – 3032.
Experimental Section
General procedure for the cyclization of bromoallenes in the absence
of palladium(0). Reaction of 9 (Scheme 4): NaH (60% suspension in
mineral oil; 12 mg, 0.3 mmol) was added to MeOH (0.5 mL) at room
temperature under nitrogen, and the mixture was stirred for 10 min at
this temperature.
A solution of the bromoallene 9 (43.1 mg,
0.12 mmol) in MeOH (0.7 mL) was added at room temperature to
the stirred mixture, which was stirred for 16 h at 608C. Concentration
under reduced pressure gave an oily residue, which was purified by
column chromatography over silica gel with n-hexane/EtOAc (3:1) to
give, in order of elution, 11 (27 mg, 81%) and 12 (3.5 mg, 9%). 11:
À1
= À
colorless solid; m.p. 488C; IR (KBr): n˜ = 1682 (C C N), 1317 cm
(NSO2); 1H NMR (300 MHz, CDCl3): d = 1.21 (s, 6H; 2 ꢀ CMe), 3.32
(s, 2H; CH2), 3.73 (d, J = 1.5 Hz, 2H; CH2), 4.32 (s, 2H; CH2Ph), 4.79
(t, J = 1.5 Hz, 1H; C CH), 7.30–7.37 ppm (m, 5H; Ph); 13C NMR
=
(67.8 MHz, CDCl3): d = 27.5 (2C), 46.1, 48.4, 51.6, 59.2, 111.6, 128.1,
128.4 (2C), 128.7 (2C), 134.7, 136.3 ppm; MS (FAB) m/z (%): 279
(89) [MH+], 91 (100); HRMS (FAB) calcd. for C14H19N2O2S [MH+]:
279.1167; found 279.1169. 12: colorless crystals; m.p. 1188C (n-
ꢀ
hexane/EtOAc); IR (KBr): n˜ = 3284 (NHSO2), 2114 (C C),
1336 cmÀ1 (NSO2); 1H NMR (300 MHz, CDCl3): d = 1.05 (s, 3H;
ꢀ
CMe), 1.08 (s, 3H; CMe), 2.56 (d, J = 2.4 Hz, 1H; C CH), 2.94 (ddd,
J = 14.4, 5.4, 1.8 Hz, 1H; CHaHb), 3.56 (dd, J = 2.4, 1.8 Hz, 1H; CH-
ꢀ
C CH), 3.64 (dd, J = 14.4, 10.8 Hz, 1H; CHaHb), 4.09 (d, J = 14.1 Hz,
1H; PhCHaHb), 4.70–4.76 (m, 1H; NH), 4.78 (d, J = 14.1 Hz, 1H;
PhCHaHb), 7.28–7.39 ppm (m, 5H; Ph); 13C NMR (75 MHz, CDCl3):
d = 23.16, 23.22, 33.7, 49.4, 52.4, 59.5, 77.0, 77.1, 127.9, 128.6 (2C),
128.9 (2C), 135.2 ppm; elemental analysis calcd (%) for C14H18N2O2S:
C 60.40, H 6.52, N 10.06; found: C 60.19, H 6.52, N 10.00.
[10] M. J. Tozer, I. M. Buck, T. Cooke, S. B. Kalindjian, I. M.
McDonald, M. J. Pether, K. I. M. Steel, Bioorg. Med. Chem.
Lett. 1999, 9, 3103 – 3108.
[11] a) K. H. Ahn, D. J. Yoo, J. S. Kim, Tetrahedron Lett. 1992, 33,
6661 – 6664; b) S. V. Pansare, A. N. Rai, S. N. Kate, Synlett 1998,
623 – 624.
Received: November 9, 2004
Published online: January 21, 2005
[12] a) M. Preiss, Chem. Ber. 1978, 111, 1915 – 1921; b) N. Aouf, G.
Dewynter, J.-L. Montero, Tetrahedron Lett. 1991, 32, 6545 – 6546.
New methods for the synthesis of cyclosulfamides have been
reported recently. For the synthesis of five-membered cyclo-
sulfamides starting from amino acids, see: c) Z. Regaꢈnia, M.
Abdaoui, N.-E. Aouf, G. Dewynter, J.-L. Montero, Tetrahedron
2000, 56, 381 – 387. For the synthesis of nonsymmetrical sulfa-
mides using Burgess-type reagents, see: d) K. C. Nicolaou, D. A.
Longbottom, S. A. Snyder, A. Z. Nalbanadian, X. Huang,
Angew. Chem. 2002, 114, 4022 – 4026; Angew. Chem. Int. Ed.
2002, 41, 3866 – 3870.
[13] M. G. Organ, J. Wang, J. Org. Chem. 2002, 67, 7847 – 7851.
[14] a) M. Montury, J. Gorꢄ, Synth. Commun. 1980, 10, 873 – 879;
b) C. J. Elsevier, J. Meijer, G. Tadema, P. M. Stehouwer, H. J. T.
Bos, P. Vermeer, J. Org. Chem. 1982, 47, 2194 – 2196; c) C. J.
Elsevier, P. Vermeer, A. Gedanken, W. Runge, J. Org. Chem.
1985, 50, 364 – 367.
Keywords: allenes · cyclization · halogen compounds ·
palladium · sulfamides
.
[1] S. Ma, in Modern Allene Chemistry, Vol. 2 (Eds.: N. Krause,
A. S. K. Hashmi), Wiley-VCH, Weinheim, 2004, pp. 614 – 619.
[2] a) H. Ohno, H. Hamaguchi, T. Tanaka, Org. Lett. 2001, 3, 2269 –
2271; b) H. Ohno, K. Ando, H. Hamaguchi, Y. Takeoka, T.
Tanaka, J. Am. Chem. Soc. 2002, 124, 15255 – 15266.
[3] a) H. Ohno, H. Hamaguchi, M. Ohata, T. Tanaka, Angew. Chem.
2003, 115, 1791 – 1795; Angew. Chem. Int. Ed. 2003, 42, 1749 –
1753; b) H. Ohno, H. Hamaguchi, M. Ohata, S. Kosaka, T.
Tanaka, Heterocycles 2003, 61, 65 – 68; c) H. Ohno, H. Hama-
guchi, M. Ohata, S. Kosaka, T. Tanaka, J. Am. Chem. Soc. 2004,
126, 8744 – 8754.
[4] a) E. J. Corey, N. W. Boaz, Tetrahedron Lett. 1984, 25, 3059 –
3062; b) A. M. Caporusso, C. Polizzi, L. Lardicci, Tetrahedron
Lett. 1987, 28, 6073 – 6076; c) F. DꢁAniello, A. Mann, A.
Schoenfelder, M. Taddei, Tetrahedron 1997, 53, 1447 – 1456;
d) F. Chemla, N. Bernard, J. Normant, Eur. J. Org. Chem. 1999,
2067 – 2078; e) J. J. Conde, W. Mendelson, Tetrahedron Lett.
[15] J.-Y. Winum, L. Toupet, V. Barragan, G. Dewynter, J.-L.
Montero, Org. Lett. 2001, 3, 2241 – 2243.
[16] Treatment of the bromoallene 38 with NaH in MeOH in the
presence of [Pd(PPh3)4] gave the seven-membered-ring product
39 in 76% yield as a result of initial intramolecular nucleophilic
attack on the central carbon of the allene moiety followed by a
second nucleophilic attack by methoxide.[3] However, treatment
1516
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 1513 –1517