5762
F. Bellina et al. / Bioorg. Med. Chem. Lett. 16 (2006) 5757–5762
9. For reviews on the chemistry and biology of combretast-
atin A-4 analogues, see: (a) Nam, N.-H. Curr. Med. Chem.
2003, 20, 558; (b) Cirla, A.; Mann, J. Nat. Prod. Rep. 2003,
20, 558; (c) Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai, F.;
Busacca, S.; Genazzani, A. A. J. Med. Chem. 2006, 49,
3033.
10. Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey,
R. W.;Hannick,S.M.;Gherke,L.;Credo,R.B.;Hui,Y.-H.;
Marsh, K.; Warner, R.; Lee, J. Y.; Zielnski-Mozng, N.;
Frost, D.; Rosenberg, S. H.; Sham, H. L. J. Med. Chem.
2002, 45, 1697.
11. (a) Bellina, F.; Anselmi, C.; Martina, F.; Rossi, R. Eur. J.
Org. Chem. 2003, 2290; (b) Bellina, F.; Falchi, E.; Rossi,
R. Atti del Convegno, P8, XVII National Meeting of the
Divisione di Chimica Farmaceutica of the Italian Chem-
ical Society, Pisa, Italy, September 6–10, 2004; (c) Bellina,
F.; Rossi, R. Abstracts, P9, 26th Winter Meeting of the
EORTC–PAMM Group, Arcachon, France, January 26–
29, 2005.
tion energy has been found to be higher than that of
CA-4. The good linear correlation (R2 = 0.95) between
calculated interaction energies of imidazoles 2 and 5
with the colchicine binding site of ab-tubulin and their
MG_MID Log GI50 values, and the identification of
ancillary binding site pockets, represent encouraging re-
sults, which suggest that the chosen theoretical method-
ology could be appropriate for the identification of
compounds with increased affinity and specificity for
the colchicine binding site. Finally, it is also worth not-
ing that, as CA-4 and some other antitubulin agents
have recently been shown to exhibit antivascular dis-
rupting activity (VDA) against tumor neovasculature
at dose levels lower than those of their maximum toler-
ated dose,18 the calculated total interaction energies
could be used to select potential lead derivatives able
to cause selective VDA.
12. Bellina, F.; Cauteruccio, S.; Mannina, L.; Rossi, R.; Viel,
S. J. Org. Chem. 2005, 70, 3997.
13. Bellina, F.; Cauteruccio, S.; Mannina, L.; Rossi, R.; Viel,
S. Eur. J. Org. Chem. 2006, 693.
Acknowledgments
14. Bellina, F.; Cauteruccio, S.; Rossi, R. Eur. J. Org. Chem.
2006, 1379.
This work was supported by the University of Pisa. We
are also grateful to Dr. I. Fichtner of Max Delbruck
¨
Center for Molecular Medicin in Berlin-Buch for an
in vivo test of tumor growth inhibition.
15. (a) Cushman, M.; He, H.-M.; Lin, C. M.; Hamel, E. J.
Med. Chem. 1993, 36, 2817; (b) Ohsumi, K.; Hatanaka, T.;
Fujita, K.; Nakagawa, R.; Fukuda, Y.; Nihei, Y.; Suga,
Y.; Morinaga, Y.; Akiyama, Y.; Tsuji, T. Bioorg. Med.
Chem. Lett. 1998, 8, 3153; (c) Liou, J.-P.; Chang, J.-Y.;
Chang, C.-W.; Chang, C.-Y.; Mahindroo, N.; Kuo, F.-M.;
Hsieh, H.-P. J. Med. Chem. 2004, 47, 2897.
Supplementary data
Complete in vitro cytotoxicity results against the NCI 60
tumor cell lines panel. Details concerning the molecular
modeling procedure: conformational search (Table 3),
docking and complex refinement (Fig. 6), and evalua-
tion of the interaction energy and binding mode (Tables
4 and 5). Linear correlation graph between the calculat-
ed total interaction energy values (Etot) and the experi-
mental MG_MID Log GI50 (Fig. 7). Supplementary
data associated with this article can be found, in the on-
16. (a) Pettit, G. R.; Rhodes, M. R.; Herald, D. L.; Hamel, E.;
Schmidt, J. M.; Pettit, R. K. J. Med. Chem. 2005, 48, 4087;
(b) Ohsumi, K.; Nakagawa, R.; Fukuda, Y.; Hatanaka,
T.; Morinaga, Y.; Nihei, Y.; Ohishi, K.; Suga, Y.;
Akiyama, Y.; Tsuji, T. J. Med. Chem. 1998, 41, 3022.
´
17. (a) Perez-Melero, C.; Maya, A. B. S.; del Rey, B.;
Caballero, E.; Medarde, M. Bioorg. Med. Chem. Lett.
2004, 14, 3771; (b) Kaffy, J.; Pontikis, R.; Carrez, D.;
Croisy, A.; Monneret, C.; Florent, J.-C. Bioorg. Med.
Chem. 2006, 14, 4067.
18. For selected papers on the relationship between tubulin
binding properties and selective damage to tumor vascu-
lature, see: (a) Dark, G. G.; Hill, S. A.; Prise, V. E.; Tozer,
G. M.; Pettit, G. R.; Chaplin, D. J. Cancer Res. 1997, 57,
1829; (b) Tozer, G. M.; Kanthou, C.; Baguley, B. C. Nat.
Rev. Cancer 2005, 5, 423.
References and notes
1. Pettit, G. R.; Singh, S. B.; Hamel, E.; Lin, C. M.; Alberts,
D. S.; Garcia-Kendall, D. Experientia 1989, 45, 209.
2. Sackett, D. L. Pharmacol. Ther. 1993, 59, 163.
3. McGown, A. T.; Fox, B. W. Cancer Chemother. Pharma-
col. 1990, 26, 79.
4. Dark, G. G.; Hill, S. A.; Prise, V. E.; Tozer, G. M.; Pettit,
G. R.; Chaplin, D. J. Cancer Res. 1997, 57, 1829.
5. Ravelli, R. B. G.; Giganti, B.; Curmi, P. A.; Jourdain, I.;
Lackar, S.; Sobel, A.; Knossow, M. Nature 2004, 428, 198.
6. Nguyen, T. L.; McGrath, C.; Hermone, A. R.; Burnett, J.
C.; Zaharevitz, D. W.; Day, B. W.; Wipf, P.; Hamel, E.;
Gussio, R. J. Med. Chem. 2005, 48, 6107.
´
19. (a) Maya, A. B.; Perez-Melero, C.; Mateo, C.; Alonso, D.;
`
`
Fernandez, J. J.; Gajate, C.; Mollinedo, F.; Pelaez, R.;
Caballero, E.; Medarde, M. J. Med. Chem. 2005, 48, 556;
(b) Lawrence, N. J.; Hepworth, L. A.; Rennison, D.;
McGown, A. T.; Hadfield, J. A. J. Fluorine Chem. 2003,
123, 101.
20. This in vivo test was performed at the Max Delbruck
¨
Center for Molecular Medicin in Berlin-Buch. MDA-MB-
435 breast cells were chosen since they resulted particu-
larly sensitive in vitro to all new imidazole derivatives (see
Supporting Information).
7. Pettit, G. R.; Rhodes, M. R.; Herald, D. L.; Chaplin, D.
J.; Stratford, M. R.; Hamel, E.; Pettit, R. K.; Chapuis, J.
C.; Oliva, D. Anticancer Drug Des. 1998, 13, 981.
8. Nam, N. H.; Kim, Y.; You, Y.-J.; Hong, D.-H.; Ki, H.-M.;
Ahn, B.-Z. Bioorg. Med. Chem. Lett. 2001, 11, 3073.
21. Kuntz, I. D. DOCK. University of California, San
22. Case, D. A. et al. AMBER 8. University of California, San
Francisco, 2002.