gramine derivatives have previously been investigated for anti-
inflammatory and analgesic activity.23
calculations. The final R1 was 0.0234 (I > 2s(I)) and wR(F2) was 0.0621
(all data); CCDC 818711.†
Vilsmeier–Haack formylation of 7 gave the C-3 aldehyde 17
in high yield. Condensation of 17 with creatinine (18) gave the
non-natural 5,6-dibromo-4¢-demethylaplysinopsin 19, isolated as
a single double bond isomer. The (E)-double bond geometry in
19 was elucidated by NMR analysis (see ESI for details†). The
5 days reaction time can be reduced to 1 h through heating
a solution of 17 and 18 in piperidine in a microwave reactor
(200 W, 150 ◦C), with a slight erosion in selectivity (61% yield,
22 : 1 E : Z).
1 (a) M. E. Welsch, S. A. Snyder and B. R. Stockwell, Curr. Opin.
Chem. Biol., 2010, 14, 347; (b) F. R. de Sa´ Alves, E. J. Barreiro
and C. A. M. Fraga, Mini-Rev. Med. Chem., 2009, 9, 782; (c) D.
A. Horton, G. T. Bourne and M. L. Smyth, Chem. Rev., 2003, 103,
893.
2 (a) P. M. Pauletti, L. S. Cintra, C. G. Braguine, A. A. da Silva Filho,
M. L. A. e Silva, W. R. Cunha and A. H. Janua´rio, Mar. Drugs, 2010,
8, 1526; (b) A. J. Kochanowska-Karamyan and M. T. Hamann, Chem.
Rev., 2010, 110, 4489; (c) W. Gul and M. T. Hamann, Life Sci., 2005,
78, 442.
3 (a) F. Reyes, R. Ferna´ndez, A. Rodr´ıguez, A. Francesch, S. Taboada,
´
ˇ
´
C. Avila and C. Cuevas, Tetrahedron, 2008, 64, 5119; (b) M. S´ısˇa, D.
The naturally occurring 5,6-dibromo-2¢-demethylaplysinopsin
21 has been shown to selectively inhibit the neoronal isozyme
of nitric oxide synthase (nNOS).8 3-Formylindole 17 was readily
converted into 21 through condensation with the known 2-
aminoimidazolone hydrochloride salt 20.24 The (Z)-double bond
geometry was obtained exclusively, and confirmed through NMR
analysis (see ESI for details†). The 5 day reaction time could again
Pla, M. Altuna, A. Francesch, C. Cuevas, F. Albericio and M. Alvarez,
J. Med. Chem., 2009, 52, 6217.
4 (a) A. M. Seldes, M. F. R. Brasco, L. H. Franco and J. A. Palermo,
Nat. Prod. Res., 2007, 21, 555; (b) M. Gompel, M. e Leost, E. B. De,
Kier Joffe, L. Puricelli, L. H. Franco, J. Palermo and L. Meijer, Bioorg.
Med. Chem. Lett., 2004, 14, 1703.
5 D. A. Appleton and B. R. Copp, Tetrahedron Lett., 2003, 44,
8963.
6 D. R. Appleton, M. J. Page, G. Lambert, M. V. Berridge and B. R.
Copp, J. Org. Chem., 2002, 67, 5402.
7 D. Tasdemir, T. S. Bugni, G. C. Mangalindan, G. P. Concepcio´n,
M. K. Harper and C. M. Ireland, Z. Naturforsch. C, 2002, 57C,
914.
8 S. Aoki, Y. Ye, K. Higuchi, A. Takashima, Y. Tanaka, I. Kitagawa and
M. Kobayashi, Chem. Pharm. Bull., 2001, 49, 1372.
9 N.-K. Lee, W. Fenical and N. Lindquist, J. Nat. Prod., 1997, 60,
697.
10 (a) G. E. Van Lear, G. O. Morton and W. Fulmor, Tetrahedron Lett.,
1973, 14, 299; (b) P. Djura, D. B. Stierle, B. Sullivan, D. J. Faulkner, E.
Arnold and J. Clardy, J. Org. Chem., 1980, 45, 1435; (c) P. Ciminiello, C.
Dell’Aversano, E. Fattorusso, S. Magno and M. Pansini, J. Nat. Prod.,
2000, 63, 263; (d) S. M. V. Pimentel, Z. P. Bojo, A. V. D. Roberto, J.
E. H. Lazaro, G. C. Mangalindan, L. M. Florentino, P. Lim-Navarro,
D. Tasdemir, C. M. Ireland and G. P. Concepcion, Mar. Biotechnol.,
2003, 5, 395; (e) A. J. Kochanowska, K. V. Rao, S. Childress, A. El-Alfy,
R. R. Matsumoto, M. Kelly, G. S. Stewart, K. J. Sufka and Mark T.
Hamann, J. Nat. Prod., 2008, 71, 186.
11 R. Majima and M. Kotake, Ber., 1930, 63B, 2237.
12 In the course of preparing this manuscipt for publication, Boyd and
Sperry reported their own investigation of the bromination of methyl
indole-3-carboxylate, and applied it to a synthesis of 5,6-dibromo-2¢-
demethylaplysinopsin 21: E. M. Boyd and J. Sperry, Synlett, 2011, 826.
Appeared online 15.03.2011.
◦
be reduced to 1 h using microwave irradiation (200 W, 150 C),
with 21 isolated in 68% yield as a 21 : 1 Z : E mixture of double
bond isomers.
In conclusion, the use of a reaction first reported in 1930,
but which has since lain dormant in the literature, has allowed
ready access to a range of both natural and non-natural 5,6-
dibrominated indoles. This work should pave the way for future
synthetic applications and biological studies.
Acknowledgements
We thank the EPSRC for funding, and acknowledge the UK
National Crystallography Service for X-ray crystallographic data
collection on compounds 2 and 3. The NMR spectrometers
used in this research were obtained through Birmingham Science
City: Innovative Uses for Advanced Materials in the Modern
World (West Midlands Centre for Advanced Materials Project
2), with support from Advantage West Midlands (AWM) and
part funded by the European Regional Development Fund
(ERDF).
13 A. Da Settimo, M. F. Saettone, E. Nannipieri and P. Barili, Gazz. Chim.
Ital., 1967, 97, 1304.
14 E. Rossignol, A. Youssef, P. Moreau, M. Prudhomme and F. Anizon,
Tetrahedron, 2007, 63, 10169.
Notes and references
15 (a) A. S. Karpov, E. Merkul, F. Rominger and T. J. J. Mu¨ller, Angew.
Chem., Int. Ed., 2005, 44, 6951; (b) E. Merkul, T. Oeserand and T. J. J.
Mu¨ller, Chem.–Eur. J., 2009, 15, 5006.
16 For a recent alternative synthesis of 7 and its application in the
preparation of 5,6-dibromotryptophan derivatives see: A. Mollica, A.
Stefanucci, F. Feliciani, G. Lucente and F. Pinnen, Tetrahedron Lett.,
2011, 52, 2583.
17 N.-Y. Ji, X.-M. Li, L.-P. Ding and B.-G. Wang, Helv. Chim. Acta, 2007,
90, 385.
18 G. T. Carter, K. L. Rinehart Jr., L H. Li, S. L. Kuentzel and J. L.
Connor, Tetrahedron Lett., 1978, 19, 4479.
‡ Crystallographic data: 2: C10H7Br2NO2, M = 332.99, Triclinic, a =
˚
7.1280(4), b = 7.3609(4), c = 10.9238(6) A, a = 90.492(3), b = 98.609(3), g =
◦
3
¯
˚
112.463(3) , U = 522.34(5) A , T = 120(2) K, space group P1, Z = 2, 9706
reflections measured, 2390 unique (Rint = 0.0302) which were used in all
calculations. The final R1 was 0.0276 (I > 2s(I)) and wR(F2) was 0.0598
(all data); CCDC 818707. 3: C15H15Br2NO4, M = 433.10, Triclinic, a =
˚
7.0596(3), b = 10.6930(4), c = 11.4729(4) A, a = 96.062(2), b = 94.194(2),
◦
3
¯
˚
g = 106.037(2) , U = 822.95(5) A , T = 120(2) K, space group P1, Z = 2,
17723 reflections measured, 3762 unique (Rint = 0.0561) which were used in
all calculations. The final R1 was 0.0387 (I > 2s(I)) and wR(F2) was 0.0763
(all data); CCDC 818708. 7: C8H5Br2N, M = 274.95, Orthorhombic, a =
3
˚
˚
19 N.-Y. Ji, X.-M. Li, C.-M. Cui and B.-G. Wang, Helv. Chim. Acta, 2007,
90, 1731.
11.0874(6), b = 7.5403(4), c = 18.872(1) A, U = 1577.7(2) A , T = 150(2) K,
space group Pbca, Z = 8, 14874 reflections measured, 1491 unique (Rint
=
20 O. R. Sua´rez-Castillo, L. Beiza-Granados, M. Mele´ndez-Rodr´ıguez, A.
0.0310) which were used in all calculations. The final R1 was 0.0279 (I >
2s(I)) and wR(F2) was 0.0778 (all data); CCDC 818709. 10: C8H4Br3N,
´
Alvarez-Herna´ndez, M. S. Morales-R´ıos and P. Joseph-Nathan, J. Nat.
˚
M = 353.85, Monoclinic, a = 8.8688(4), b = 6.0886(3), c = 16.8852(8) A,
Prod., 2006, 69, 1596.
◦
3
˚
b = 91.443(3) , U = 911.49(7) A , T = 150(2) K, space group P21/c, Z =
21 A. Da Settimo and E. Nannipieri, J. Org. Chem., 1970, 35,
4, 8715 reflections measured, 1603 unique (Rint = 0.0396) which were used
in all calculations. The final R1 was 0.0251 (I > 2s(I)) and wR(F2) was
0.0666 (all data); CCDC 818710. 11: C9H6Br3N, M = 367.88, Triclinic, a =
2546.
22 Y. Liu and G. W. Gribble, J. Nat. Prod., 2002, 65, 748.
23 A. Da Settimo, G. Primofiore, P. L. Ferrarini, J. S. Franzone,
R. Cirillo and C. Cravanzola, Eur. J. Med. Chem., 1983, 18,
261.
˚
7.6033(4)◦, b = 8.0327(4), c = 9.6610(5) A, a = 68.061(3), b = 66.835(3), g =
3
¯
˚
73.873(3) , U = 497.24(4) A , T = 120(2)K, space group P1, Z = 2, 4842
reflections measured, 1695 unique (Rint = 0.0172) which were used in all
24 N. Roue´ and J. Bergman, Tetrahedron, 1999, 55, 14729.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 5021–5023 | 5023
©