In summary, we report the first synthesis of a quinoidal push–
pull porphyrin. The NMR spectra, electronic absorption spectra,
DFT calculations and crystal structure of this macrocycle show no
significant contribution from the aromatic-zwitterionic canonical.
The curved structure of the chromophore results in the formation
of unusual cyclic trimer aggregates in the solid state, which pack
into a remarkable honeycomb structure. The channels in this
framework appear to be just large enough to accommodate a
˚
string of C60 molecules (van der Waals radius 10.5 A).
We thank EPSRC, CCLRC and EOARD for support, the
EPSRC Mass Spectrometry Service (Swansea) for mass spectra,
and Oxford University for a studentship for MJS.
Martin J. Smith,a William Clegg,b Kiet A. Nguyen,c Joy E. Rogers,c
Ruth Pachter,c Paul A. Fleitzc and Harry L. Anderson*a
aDepartment of Chemistry, University of Oxford, Chemistry Research
Laboratory, Mansfield Road, Oxford, UK OX1 3TA.
E-mail: harry.anderson@chem.ox.ac.uk; Fax: +44(0)1865 285002;
Tel: +44(0)1865 275704
bDepartment of Chemistry, University of Newcastle, Newcastle upon
Tyne, UK NE1 7RU, and CCLRC Daresbury Laboratory, Warrington,
UK WA4 4AD
cAir Force Research Laboratory, AFRL/MLPJ, 3005 Hobson Way,
Wright-Patterson Air Force Base, Dayton, Ohio, 45433-7702, USA
Notes and references
Fig. 5 Two views of the (Zn2)3 aggregate, omitting coordinated
methanol and aryl substituents; 50% probability ellipsoids.
{ Crystal data for Zn2: crystals were grown from CHCl3/CH3OH and the
structure was solved using synchrotron X-rays at Daresbury Station 9.8.
¯
C58H54N6S2Zn?6.5CH4O, M 5 1172.8, triclinic, space group P1,
˚
a 5 20.792(3), b 5 24.707(3), c 5 25.188(3) A, a 5 63.913(2),
3
˚
˚
b 5 84.532(2), c 5 81.473(2)u; V 5 11486(3) A , Z 5 6, l 5 0.6932 A,
m 5 0.42 mm21, T 5 150 K, R 5 0.0807 for 18810 observed reflections [I .
2s(I)] and Rw 5 0.2381 for all 32471 unique reflections. CCDC 264994. See
CIF or other electronic format.
1 M. Ravi, D. N. Rao, S. Cohen, I. Agranat and T. P. Radhakrishnan,
Chem. Mater., 1997, 9, 830; Y. Yamashita and M. Tomura, J. Mater.
Chem., 1998, 8, 1933.
2 S. Inoue, Y. Aso and T. Otsubo, Chem. Commun., 1997, 1105.
3 A. S. Batsanov, M. R. Bryce, M. A. Coffin, A. Green, R. E. Hester,
J. A. K. Howard, I. K. Lednev, N. Mart´ın, A. J. Moore, J. N. Moore,
E. Ort´ı, L. Sa´nchez, M. Saviro´n, P. M. Viruela, R. Viruela and T.-Q. Ye,
Chem. Eur. J., 1998, 4, 2580.
4 M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane,
P. N. Taylor and H. L. Anderson, J. Am. Chem. Soc., 2004, 126, 15352;
K. J. McEwan, P. A. Fleitz, J. E. Rogers, J. E. Slagle, D. G. McLean,
H. Akdas, M. Katterle, I. M. Blake and H. L. Anderson, Adv. Mater.,
2004, 16, 1933.
Fig. 6 Packing diagram for Zn2 showing the van der Waals surface,
omitting methanol except where coordinated to zinc; an infinite projection
along the a-axis.
5 I. M. Blake, H. L. Anderson, D. Beljonne, J.-L. Bre´das and W. Clegg,
J. Am. Chem. Soc., 1998, 120, 10764.
6 M. Yeung, A. C. H. Ng, M. G. B. Drew, E. Vorpagel, E. M. Breitung,
R. J. McMahon and D. K. P. Ng, J. Org. Chem., 1998, 63, 7143.
7 M. Uno, K. Seto and S. Takahashi, J. Chem. Soc., Chem. Commun.,
1984, 932.
each case is between a pyrrole nitrogen and a carbon atom of the
…
˚
˚
8 R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 1996, 256, 454;
M. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem.
Phys., 1998, 108, 4439; A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
9 S. Inoue, S. Mikami, Y. Aso, T. Otsubo, T. Wada and H. Sasabe,
Synth. Met., 1997, 84, 395.
benzene ring (C N distances: 3.36, 3.43 and 3.44 A, cf. 3.41 A for
the sum of the van der Waals radii). These aggregates pack to
generate infinite methanol-filled channels (Fig. 6). The channels are
˚
large enough to accommodate a continuous cylinder of 10 A
10 I. M. Blake, L. H. Rees, T. D. W. Claridge and H. L. Anderson, Angew.
Chem., Int. Ed., 2000, 39, 1818; I. M. Blake, A. Krivokapic, M. Katterle
and H. L. Anderson, Chem. Commun., 2002, 1662.
11 D. V. Soldatov, I. L. Moudrakovski and J. A. Ripmeester, Angew.
Chem., Int. Ed., 2004, 43, 6308; S. Kitagaw, R. Kitaura and S. Noro,
Angew. Chem., Int. Ed., 2004, 43, 2334; D. Laliberte´, T. Maris and
J. D. Wuest, J. Org. Chem., 2004, 69, 1776; O. M. Yaghi, M. O’Keeffe,
N. W. Ockwig, H. K. Chae, M. Eddaoudi and J. Kim, Nature, 2003,
423, 705.
diameter within the van der Waals surface. The planes of the
porphyrin and the thioacetal benzene ring are parallel to the walls
of the channels (Figs. 5A and 6 have the same orientation), and
contacts between cyclic trimer aggregates are confined to the meso-
3,5-di-tert-butylphenyl substituents. Although many other zeolite-
like nanoporous organic frameworks have been reported, very few
exhibit such large continuous channels.11
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 2433–2435 | 2435