D
Y. Zhao et al.
Letter
Synlett
benzonitriles was also achieved in excellent yields (Scheme
3, method b); this was attributed to the optimized solvent
of aqueous methanol, which was suitable for both oxima-
tion of aldehydes and cyanation of aldoximes (see Support-
ing Information for screening details). Unfortunately, other
aldoximes, such as benzaldoxime (2a), 4-methylbenzalde-
hydoxime (2b), and 4-chlorobenzaldoxime (2e), were al-
most completely unresponsive under these adjusted condi-
tions (see Table S2). Nevertheless, a gram-scale reaction
was carried out with 4-nitrobenzaldehyde 1i as model sub-
strate, and product 3i was formed in excellent yield (96%),
which indicates the practicality of the application this one-
pot strategy in large batch production of nitriles.
In conclusion, we have developed a rapid, simple, mild
and practical process for conversion of aldoximes into ni-
triles promoted by the novel dehydration system of
SO2F2/Et3N/CH3CN.15,16 The reaction proceeded with a range
of aldoximes in excellent to near quantitative yields to af-
ford the corresponding nitriles, demonstrating the great
functional group compatibility and high efficiency of this
protocol. Moreover, the eco-friendly conditions of
SO2F2/Na2CO3/aqueous methanol were suitable for convert-
ing nitrobenzaldoximes into nitrobenzonitriles. In addition,
a one-pot synthetic strategy of obtaining nitrobenzonitriles
from nitrobenzaldehydes has been confirmed to be feasible.
(4) (a) Campbell, J. A.; McDougald, G.; McNab, H.; Rees, L. V. C.; Tyas,
R. G. Synthesis 2007, 3179. (b) Hendrickson, J. B.; Hussoin, M. S.
J. Org. Chem. 1987, 52, 4137.
(5) (a) Luca, L. D.; Giacomelli, G.; Porcheddu, A. J. Org. Chem. 2002,
67, 6272. (b) Yadav, L. D. S.; Srivastava, V. P.; Patel, R. Tetrahe-
dron Lett. 2009, 50, 5532. (c) Singh, M. K.; Lakshman, M. K.
J. Org. Chem. 2009, 74, 3079. (d) Deton, R. M.; An, J.; Lindovska,
P.; Lewis, W. Tetrahedron 2012, 68, 2899. (e) An, X. D.; Yu, S. Y.
Org. Lett. 2015, 17, 5064.
(6) (a) Loupy, A.; Régnier, S. Tetrahedron Lett. 1999, 40, 6221.
(b) Boruah, M.; Knowar, D. J. Org. Chem. 2002, 67, 7138.
(c) Gucma, M.; Gołębiewski, W. M. Synthesis 2008, 1997. (d) Rai,
A.; Yadav, L. D. S. Eur. J. Org. Chem. 2013, 1889. (e) Song, Y. P.;
Shen, D. G.; Zhang, Q. H.; Chen, B.; Xu, G. Y. Tetrahedron Lett.
2014, 55, 639. (f) Ryohei, O.; Kazutoshi, S.; Hiromi, H.; Akira, N.;
Tomohiro, M.; Yasuyoshi, M. Synlett 2018, 1465.
(7) (a) Yang, S. H.; Chang, S. Org. Lett. 2001, 3, 4209. (b) Choi, E.; Lee,
C.; Na, Y.; Chang, S. Org. Lett. 2002, 4, 2369. (c) Yamaguchi, K.;
Fujiwara, H.; Ogasawara, Y.; Kotani, M.; Mizuno, N. Angew.
Chem. Int. Ed. 2007, 46, 3922. (d) Tambara, K.; Pantoş, G. D. Org.
Biomol. Chem. 2013, 11, 2466. (e) Hyodo, K.; Kitagawa, S.;
Yamazaki, M.; Uchida, K. Chem. Asian J. 2016, 11, 1348.
(f) Rapeyko, A.; Climent, M. J.; Corma, A.; Concepcion, P.; Iborra,
S. ACS Catal. 2016, 6, 4564.
(8) Holleman-Wiberg’s Inorganic Chemistry; Wiberg, N.; Holleman,
A. F.; Wiberg, E., Ed.; Academic Press: New York, 2001, 550.
(9) For the selected SuFEx chemistry, see: (a) Dong, J. J.; Krasnova,
L.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2014, 53,
9430. (b) Chen, W.; Dong, J. J.; Plate, L.; Mortenson, D. E.;
Brighty, G. J.; Li, S.; Liu, Y.; Galmozzi, A.; Lee, P. S.; Hulce, J. J.;
Cravatt, B. F.; Saez, E.; Powers, E. T.; Wilson, I. A.; Sharpless, K.
B.; Kelly, J. W. J. Am. Chem. Soc. 2016, 138, 7353. (c) Gao, B.;
Zhang, L.; Zheng, Q.; Zhou, F.; Klivansky, L. M.; Lu, J.; Liu, Y.;
Dong, J. J.; Wu, P.; Sharpless, K. B. Nat. Chem. 2017, 9, 1083.
(d) Liu, Z.; Li, J.; Li, S. H.; Li, G.; Sharpless, K. B.; Wu, P. J. Am.
Chem. Soc. 2018, 140, 2919. (e) Wang, H.; Zhou, F.; Ren, G.;
Zheng, Q.; Chen, H.; Gao, B.; Klivansky, L.; Liu, Y.; Wu, B.; Xu, Q.;
Lu, J.; Sharpless, K. B.; Wu, P. Angew. Chem. Int. Ed. 2017, 56,
11203. (f) Marra, A.; Dong, J. J.; Ma, T. C.; Giuntini, S.; Crescenzo,
E.; Cerofolini, L.; Martinucci, M.; Luchinat, C.; Fragai, M.; Nativi,
C.; Dondoni, A. Chem. Eur. J. 2018, 24, 18981. (g) Guo, T. J.; Meng,
G. Y.; Zhan, X. J.; Yang, Q.; Ma, T. C.; Xu, L.; Sharpless, K. B.; Dong,
J. J. Angew. Chem. Int. Ed. 2018, 57, 2605. (h) Smedley, C. J.;
Zheng, Q. H.; Gao, B.; Li, S. H.; Molino, A.; Duivenvoorden, H. M.;
Parker, B. S.; Wilson, D. J. D.; Sharpless, K. B.; Moses, J. E. Angew.
Chem. Int. Ed. 2019, 58, 4552.
(10) (a) Revathi, L.; Ravindar, L.; Leng, J.; Rakesh, K. P.; Qin, H. L.
Asian J. Org. Chem. 2018, 7, 662. (b) Epifanov, M.; Foth, P. J.; Gu,
F.; Barrillon, C.; Kanani, S. S.; Higman, C. S.; Hein, J. E.; Sammis,
G. M. J. Am. Chem. Soc. 2018, 140, 16464. (c) Schimler, S. D.;
Cismesia, M. A.; Hanley, P. S.; Froese, R. D. J.; Jansma, M. J.;
Bland, D. C.; Sanford, M. S. J. Am. Chem. Soc. 2017, 139, 1452.
(d) Hanley, P. S.; Clark, T. P.; Krasovskiy, A. L.; Ober, M. S.;
O’Brien, J. P.; Staton, T. S. ACS Catal. 2016, 6, 3515. (e) Zha, G. F.;
Fang, W. Y.; Li, Y. G.; Leng, J.; Chen, X.; Qin, H. L. J. Am. Chem. Soc.
2018, 140, 17666. (f) Zhao, C.; Fang, W. Y.; Rakesh, K. P.; Qin, H.
L. Org. Chem. Front. 2018, 5, 1835. (g) Fang, W. Y.; Huang, Y. M.;
Leng, J.; Qin, H. L. Asian J. Org. Chem. 2018, 7, 751. (h) Fang, W.
Y.; Leng, J.; Qin, H. L. Chem. Asian J. 2017, 12, 2323. (i) Zhao, C.;
Zha, G. F.; Fang, W. Y.; Rakesh, K. P.; Qin, H. L. Eur. J. Org. Chem.
2019, 1801. (j) Revathi, L.; Ravindar, L.; Moku, B.; Qin, H. L. Org.
Chem. Front. 2019, 6, 796. (k) Zhang, X.; Rakesh, K. P.; Qin, H. L.
Funding Information
We acknowledge financial support from the National Natural Science
Foundation of China (no. 20702051), the Natural Science Foundation
of Zhejiang Province (LY13B020017).
N
aturalS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
of
Z
h
e
j
i
a
n
g
Pro
v
i
n
c
e
(L
Y
1
3
B
0
2
0
0
1
7)Nati
o
n
a
lNaturalS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
of
C
h
i
n
a
(2
0
7
0
2
0
5
1)S
c
i
e
n
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
D
e
p
artm
e
ntof
Z
h
e
j
i
a
n
g
Pro
v
i
n
c
e
(2
0
7
0
2
0
5
1)
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
References and Notes
(1) (a) Smith, M. B.; March, J. Advanced Organic Chemistry: Reac-
tions, Mechanisms and Structure, 6th ed; Wiley Interscience:
Chichester, 2007. (b) Frizler, M.; Lohr, F.; Furtmann, N.; Kläs, J.;
Gütschow, M. J. Med. Chem. 2011, 54, 396. (c) Bagal, D. B.;
Bhanage, B. M. Adv. Synth. Catal. 2015, 357, 883. (d) Wang, M. X.
Acc. Chem. Res. 2015, 48, 602. (e) Hu, P.; Chai, J. C.; Duan, Y. L.;
Liu, Z. H.; Cui, G. L.; Chen, L. Q. J. Mater. Chem. A 2016, 4, 10070.
(2) (a) Larock, R. C. Comprehensive Organic Transformations, 2nd ed;
Wiley: New York, 1999. (b) Anbarasan, P.; Schareina, T.; Beller,
M. Chem. Soc. Rev. 2011, 40, 5049.
(3) (a) Sandmeyer, T. Ber. Dtsch. Chem. Ges. 1884, 17, 1633.
(b) Rosenmund, K. W.; Struck, E. Ber. Dtsch. Chem. Ges. B. 1919,
52, 1749. (c) Nielsen, M. A.; Nielsen, M. K.; Pittelkow, A. Org.
Process Res. Dev. 2004, 8, 1059. (d) Pradal, A.; Evano, G. Chem.
Commun. 2014, 50, 11907. (e) Cristau, H. J.; Ouali, A.; Spindler, J.
F.; Taillefer, M. Chem. Eur. J. 2005, 11, 2483. (f) Zhang, X.; Xia, A.;
Chen, H.; Liu, Y. Org. Lett. 2017, 19, 2118. (g) Ushkov, A. V.;
Grushin, V. V. J. Am. Chem. Soc. 2011, 133, 10999.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–E