Heterologous Expression of Dioxygenases in Rhodococcus
827
4
)
Grassman JA, Masten SA, Walker NJ, and Lucier GW, Environ.
Health Perspect., 106 (Suppl. 2), 761–775 (1998).
Safe SH, Pharmacol. Ther., 67, 247–281 (1995).
26) Shao ZQ, Seffens W, Mulbry W, and Behki RM, J. Bacteriol.,
177, 5748–5755 (1995).
5
6
7
)
)
)
27) Smith TJ, Lloyd JS, Gallagher SC, Fosdike WL, Murrell JC, and
Dalton H, Eur. J. Biochem., 260, 446–452 (1999).
28) Arai H, Kosono S, Taguchi K, Maeda M, Song E, Fuji F, Chung
S-Y, and Kudo T, J. Ferment. Bioeng., 86, 595–599 (1998).
29) Iida T, Mukouzaka Y, Nakamura K, Yamaguchi I, and Kudo T,
Biosci. Biotechnol. Biochem., 66, 1462–1472 (2002).
30) Kosono S, Maeda M, Fuji F, Arai H, and Kudo T, Appl.
Environ. Microbiol., 63, 3282–3285 (1997).
Freeman RA and Schroy JM, Chemosphere, 14, 873–876 (1985).
Philippi M, Krasnobajew V, Zyeyer J, and H u¨ tter R, ‘‘Microbial
Degradation of Xenobiotics and Recalcitrant Compounds,’’ eds.
Leisinger T, H u¨ tter R, Cook AM, and N u¨ esch J, Academic
Press, New York, pp. 221–233 (1981).
8
9
)
)
Field JA and Sierra-Alvarez R, Chemosphere, 71, 1005–1018
(2008).
Hiraishi A, Microbes Environ., 18, 105–125 (2003).
31) Seto M, Masai E, Ida M, Hatta T, Kimbara K, Fukuda M, and
Yano K, Appl. Environ. Microbiol., 61, 4510–4513 (1995).
32) Iida T, Nakamura K, Izumi A, Mukouzaka Y, and Kudo T,
Arch. Microbiol., 184, 305–315 (2006).
1
0) Nojiri H and Omori T, Biosci. Biotechnol. Biochem., 66, 2001–
2016 (2002).
1
1) Wittich R-M, Appl. Microbiol. Biotechnol., 49, 489–499 (1998).
2) Gibson DT and Parales RE, Curr. Opin. Biotechnol., 11, 236–
1
33) Shindo K, Ohnishi Y, Chun HK, Takahashi H, Hayashi M,
Saito A, Iguchi K, Furukawa K, Harayama S, Horinouchi S,
and Misawa N, Biosci. Biotechnol. Biochem., 65, 2472–2481
(2001).
243 (2000).
1
1
1
3) McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M,
Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D,
Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM,
Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones
SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE,
Mohn WW, and Eltis LD, Proc. Natl. Acad. Sci. USA, 103,
34) Larkin MJ, Kulakov LA, and Allen CC, Curr. Opin. Biotech-
nol., 16, 282–290 (2005).
35) Sokolovska I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN,
and Wattiau P, Appl. Environ. Microbiol., 69, 7019–7027
(2003).
15582–15587 (2006).
4) Chain PS, Denef VJ, Konstantinidis KT, Vergez LM, Agullo L,
Reyes VL, Hauser L, Cordova M, Gomez L, Gonzalez M, Land
M, Lao V, Larimer F, LiPuma JJ, Mahenthiralingam E, Malfatti
SA, Marx CJ, Parnell JJ, Ramette A, Richardson P, Seeger M,
Smith D, Spilker T, Sul WJ, Tsoi TV, Ulrich LE, Zhulin IB, and
Tiedje JM, Proc. Natl. Acad. Sci. USA, 103, 15280–15287
36) Sutcliffe IC, Antonie Van Leeuwenhoek, 74, 49–58 (1998).
37) Cerniglia CE, Morgan JC, and Gibson DT, Biochem. J., 180,
175–185 (1979).
38) Mohammadi M and Sylvestre M, Chem. Biol., 12, 835–846
(2005).
39) Hammer E, Krowas D, Schafer A, Specht M, Francke W, and
Schauer F, Appl. Environ. Microbiol., 64, 2215–2219 (1998).
40) Wilkes H, Wittich R, Timmis K, Fortnagel P, and Francke W,
Appl. Environ. Microbiol., 62, 367–371 (1996).
41) Fukuda K, Nagata S, and Taniguchi H, FEMS Microbiol. Lett.,
208, 179–185 (2002).
(2006).
5) Nojiri H, Nam JW, Kosaka M, Morii KI, Takemura T, Furihata
K, Yamane H, and Omori T, J. Bacteriol., 181, 3105–3113
(
1999).
6) Resnick SM and Gibson DT, Appl. Environ. Microbiol., 62,
073–4080 (1996).
1
1
1
1
2
2
2
2
2
2
4
42) Kimura N and Urushigawa Y, J. Biosci. Bioeng., 92, 138–143
(2001).
7) Iwasaki T, Miyauchi K, Masai E, and Fukuda M, Appl. Environ.
Microbiol., 72, 5396–5402 (2006).
43) Armengaud J, Happe B, and Timmis KN, J. Bacteriol., 180,
3954–3966 (1998).
8) Iwasaki T, Takeda H, Miyauchi K, Yamada T, Masai E, and
Fukuda M, Biosci. Biotechnol. Biochem., 71, 993–1002 (2007).
9) Habe H, Chung JS, Lee JH, Kasuga K, Yoshida T, Nojiri H, and
Omori T, Appl. Environ. Microbiol., 67, 3610–3617 (2001).
0) Iida T, Mukouzaka Y, Nakamura K, and Kudo T, Appl. Environ.
Microbiol., 68, 3716–3723 (2002).
44) Kitagawa W, Kimura N, and Kamagata Y, J. Bacteriol., 186,
4894–4902 (2004).
45) Kimura N, Kitagawa W, Mori T, Nakashima N, Tamura T,
and Kamagata Y, Appl. Microbiol. Biotechnol., 73, 474–484
(2006).
1) Masai E, Yamada A, Healy J, Hatta T, Kimbara K, Fukuda M,
and Yano K, Appl. Environ. Microbiol., 61, 2079–2085 (1995).
2) McKay DB, Seeger M, Zielinski M, Hofer B, and Timmis KN,
J. Bacteriol., 179, 1924–1930 (1997).
46) Kitagawa W, Suzuki A, Hoaki T, Masai E, and Fukuda M,
Biosci. Biotechnol. Biochem., 65, 1907–1911 (2001).
47) Kim SJ, Kweon O, Freeman JP, Jones RC, Adjei MD, Jhoo JW,
Edmondson RD, and Cerniglia CE, Appl. Environ. Microbiol.,
72, 1045–1054 (2006).
3) Taguchi K, Motoyama M, Iida T, and Kudo T, Biosci.
Biotechnol. Biochem., 71, 1136–1144 (2007).
48) Stingley RL, Khan AA, and Cerniglia CE, Biochem. Biophys.
Res. Commun., 322, 133–146 (2004).
4) Denome SA, Olson ES, and Young KD, Appl. Environ.
Microbiol., 59, 2837–2843 (1993).
5) Geueke B and Hummel W, Protein Expr. Purif., 28, 303–309
49) Schreiner G, Wiedmann T, Schimmel H, and Ballschmiter K,
Chemosphere, 34, 1315–1331 (1997).
(2003).