Organic Letters
Letter
transformations. Recently, we developed the chiral primary−
J. Am. Chem. Soc. 2010, 132, 17471−17482. (e) Constantine, R. N.;
Kim, N.; Bunt, R. C. Org. Lett. 2003, 5, 2279−2282. (f) Xu, J.; Wei,
T.; Zhang, Q. J. Org. Chem. 2004, 69, 6860−6866. (g) Kwong, F. Y.;
Li, Y. M.; Lam, W. H.; Qiu, L.; Lee, H. W.; Yeung, C. H.; Chan, K. S.;
Chan, A. S. C. Chem. - Eur. J. 2005, 11, 3872−3880. (h) Lam, F. L.;
Au-Yeung, T. T. L.; Kwong, F. Y.; Zhou, Z.; Wong, K. Y.; Chan, A. S.
C. Angew. Chem., Int. Ed. 2008, 47, 1280−1283. (i) Akhani, R. K.;
Moore, M. I.; Pribyl, J. G.; Wiskur, S. L. J. Org. Chem. 2014, 79,
18
tertiary diamine catalyzed sulfuration reaction of ketones.
Survey of the catalysts showed significant dependence on the
size of the N-substituents (see the SI). Regression analysis also
showed that the enantiocontrol was mainly determined by the
1
S4B). These findings further confirmed the applicability of this
DLS model.
2
384−2396. (j) Mulzer, M.; Lamb, J. R.; Nelson, Z.; Coates, G. W.
Chem. Commun. 2014, 50, 9842−9845.
4) (a) Jensen, K. H.; Sigman, M. S. Angew. Chem., Int. Ed. 2007, 46,
748−4750. (b) Jensen, K. H.; Sigman, M. S. J. Org. Chem. 2010, 75,
In conclusion, we have developed a double-layered Sterimol
model to account for the steric effect on enantioselectivity in
the dual primary amine/palladium-catalyzed asymmetric allylic
alkylation reactions. The results showed that both the
(
4
7194−7201. (c) Li, X.; Deng, H.; Zhang, B.; Li, J.; Zhang, L.; Luo, S.;
Cheng, J.-P. Chem. - Eur. J. 2010, 16, 450−455. (d) Li, Z.; Li, X.; Ni,
X.; Cheng, J.-P. Org. Lett. 2015, 17, 1196−1199.
minimum width of the outsphere (B ) and the innersphere
1
(
B ′) had a big influence on the enantio-outcome. Further
1
analysis showed the origin of this steric shielding effect comes
from the proper orientation of the N-substituents during the
catalytic process. This model was also effective in several other
primary amine-catalyzed reactions where H-bonding was
absent, indicating the influence of the N-substituent
orientation was general in primary amine-based catalysis.
This finding gave us useful hints toward the development of
new primary amine catalysts.
(5) (a) Knowles, R. R.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc.
2
010, 132, 5030−5032. (b) Knowles, R. R.; Jacobsen, E. N. Proc.
Natl. Acad. Sci. U. S. A. 2010, 107, 20678−20685.
6) (a) Miller, J. J.; Sigman, M. S. Angew. Chem., Int. Ed. 2008, 47,
(
771−774. (b) Sigman, M. S.; Miller, J. J. J. Org. Chem. 2009, 74,
7633−7643. (c) Harper, K. C.; Bess, E. N.; Sigman, M. S. Nat. Chem.
2012, 4, 366−374. (d) Harper, K. C.; Sigman, M. S. Proc. Natl. Acad.
Sci. U. S. A. 2011, 108, 2179−2183. (e) Harper, K. C.; Vilardi, S. C.;
Sigman, M. S. J. Am. Chem. Soc. 2013, 135, 2482−2485. (f) Huang,
H.; Zong, H.; Bian, G.; Song, L. J. Org. Chem. 2012, 77, 10427−
10434. (g) Huang, H.; Zong, H.; Shen, B.; Yue, H.; Bian, G.; Song, L.
Tetrahedron 2014, 70, 1289−1297. (h) Huang, H.; Zong, H.; Bian,
G.; Yue, H.; Song, L. J. Org. Chem. 2014, 79, 9455−9464. (i) Piou, T.;
Romanov-Michailidis, F.; Romanova-Michaelides, M.; Jackson, K. E.;
Semakul, N.; Taggart, T. D.; Newell, B. S.; Rithner, C. D.; Paton, R.
S.; Rovis, T. J. Am. Chem. Soc. 2017, 139, 1296−1310.
(7) For reviews, see: (a) Santiago, C. B.; Guo, J.-Y.; Sigman, M. S.
Chem. Sci. 2018, 9, 2398−2412. (b) Sigman, M. S.; Harper, K. C.;
Bess, E. N.; Milo, A. Acc. Chem. Res. 2016, 49, 1292−1301. For the
initial contributions, see: (c) Harper, K. C.; Sigman, M. S. Science
ASSOCIATED CONTENT
Supporting Information
■
*
S
Experimental procedures, screening data, steric param-
2
(
2
011, 333, 1875−1878.
8) (a) Milo, A.; Bess, E. N.; Sigman, M. S. Nature 2014, 507, 210−
14. (b) Zhang, C.; Santiago, C. B.; Kou, L.; Sigman, M. S. J. Am.
AUTHOR INFORMATION
■
*
*
ORCID
Chem. Soc. 2015, 137, 7290−7293. (c) Bess, E. N.; Bischoff, A. J.;
Sigman, M. S. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 14698−14703.
(d) Milo, A.; Neel, A. J.; Toste, F. D.; Sigman, M. S. Science 2015,
3
47, 737−743. (e) Chen, Z.-M.; Hilton, M. J.; Sigman, M. S. J. Am.
Author Contributions
Chem. Soc. 2016, 138, 11461−11464. (f) Neel, A. J.; Milo, A.; Sigman,
M. S.; Toste, F. D. J. Am. Chem. Soc. 2016, 138, 3863−3875.
(g) Yamamoto, E.; Hilton, M. J.; Orlandi, M.; Saini, V.; Toste, F. D.;
∥
Y.W. and H.Z. contributed equally to this work.
Notes
Sigman, M. S. J. Am. Chem. Soc. 2016, 138, 15877−15880.
(h) Orlandi, M.; Coelho, J. A. S.; Hilton, M. J.; Toste, F. D.;
Sigman, M. S. J. Am. Chem. Soc. 2017, 139, 6803−6806. (i) Orlandi,
M.; Hilton, M. J.; Yamamoto, E.; Toste, F. D.; Sigman, M. S. J. Am.
Chem. Soc. 2017, 139, 12688−12695. (j) Niemeyer, Z. L.; Pindi, S.;
Khrakovsky, D. A.; Kuzniewski, C. N.; Hong, C. M.; Joyce, L. A.;
Sigman, M. S.; Toste, F. D. J. Am. Chem. Soc. 2017, 139, 12943−
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank the Natural Science Foundation of China
21390400, 21572232, 21672217, and 21521002) and
Tsinghua University for financial support. S.L. is supported
■
(
12946. (k) Park, Y.; Niemeyer, Z. L.; Yu, J.-Q.; Sigman, M. S.
Organometallics 2018, 37, 203−210. (l) Crawford, J. M.; Stone, E. A.;
Metrano, A. J.; Miller, S. J.; Sigman, M. S. J. Am. Chem. Soc. 2018, 140,
by the National Program of Top-notch Young Professionals.
8
68−871.
REFERENCES
(9) (a) Zhang, L.; Luo, S. Synlett 2012, 23, 1575−1589. (b) Peng,
■
F.; Shao, Z. J. Mol. Catal. A: Chem. 2008, 285, 1−13.
(
2
1) Gustafson, J. L.; Sigman, M. S.; Miller, S. J. Org. Lett. 2010, 12,
794−2797.
(
(
10) Zhang, L.; Fu, N.; Luo, S. Acc. Chem. Res. 2015, 48, 986−997.
11) For selected examples, see: (a) Luo, S.; Xu, H.; Li, J.; Zhang, L.;
(
2
2
(
2) (a) Harper, K. C.; Sigman, M. S. J. Org. Chem. 2013, 78, 2813−
818. (b) Zhang, L.; Li, X.; Luo, S.; Cheng, J.-P. Sci. China. Chem.
016, 46, 535−550.
3) For initial reports, see: (a) Jacobsen, E. N.; Zhang, W.; Gu
L. J. Am. Chem. Soc. 1991, 113, 6703−6704. (b) Palucki, M.; Finney,
N. S.; Pospisil, P. J.; Guler, M. L.; Ishida, T.; Jacobsen, E. N. J. Am.
Chem. Soc. 1998, 120, 948−954. For selected examples, see:
c) Yang, D.; Yip, Y. C.; Chen, J.; Cheung, K. K. J. Am. Chem. Soc.
998, 120, 7659−7660. (d) Jensen, K. H.; Webb, J. D.; Sigman, M. S.
Cheng, J.-P. J. Am. Chem. Soc. 2007, 129, 3074−3075. (b) Luo, S.; Xu,
H.; Zhang, L.; Li, J.; Cheng, J.-P. Org. Lett. 2008, 10, 653−656.
(c) Luo, S.; Zhou, P.; Li, J.; Cheng, J.-P. Chem. - Eur. J. 2010, 16,
4457−4461. (d) Fu, N.; Zhang, L.; Li, J.; Luo, S.; Cheng, J.-P. Angew.
Chem., Int. Ed. 2011, 50, 11451−11455. (e) Fu, N.; Zhang, L.; Luo,
S.; Cheng, J.-P. Chem. - Eur. J. 2013, 19, 15669−15681. (f) Xu, C.;
Zhang, L.; Luo, S. Angew. Chem., Int. Ed. 2014, 53, 4149−4153.
(g) Zhang, L.; Xu, C.; Mi, X.; Luo, S. Chem. - Asian J. 2014, 9, 3565−
̈
ler, M.
̈
(
1
D
Org. Lett. XXXX, XXX, XXX−XXX