K. Ghosh, T. Sen / Tetrahedron Letters 50 (2009) 4096–4100
4099
1
1
0
0
0
.2
.0
.8
.6
.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
(
a)
(b)
0.2
0.0
0
.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
XG
XG
3
Figure 7. Job plots of 1 with biotin methyl ester (a) and urea (b) from UV method in CH CN.
Acknowledgments
We thank CSIR, New Delhi, for financial support and DST, New
Delhi for providing facilities in the department under DST FIST pro-
gram. T.S. thanks CSIR, New Delhi, for a fellowship.
Supplementary data
Supplementary data (binding constant curves for 1 with biotin
3 3
methyl ester and urea in CHCl containing 1% CH CN, change in
emission of 1 in the presence of biotin methyl ester and urea in
Figure 8. Partial 1H NMR spectra of (a) receptor 1 (c = 4.8 ꢀ 10ꢁ3 M), (b) biotin
1
CH
3
CN, and change in H NMR of 1 in the presence of equivalent
containing 1% CD CN are available) asso-
3
methyl ester and (c) 1:1 complex of 1 with biotin methyl ester in CDCl containing
amount of urea in CDCl
3
3
1
3
% CD CN.
appearing at d 12.02 ppm moved downfield (
lesser extent and became broad. Furthermore, the isophthaloyl peri
proton H underwent significant downfield shift ( d = 0.6 ppm)
Dd = 0.18 ppm) to the
References and notes
b
D
1
2
.
.
Dugas, H. Bio-organic Chemistry; Springer: New York, 1996.
Lehn, J. M. Supramolecular Chemistry; VCH: Weinhein, New York, Basel,
Cambridge, Tokyo, 1995.
upon complexation. In presence of equivalent amount of urea,
0
thiourea, and N,N -dimethylurea this peri proton of 1 exhibited
3
4
.
.
Pedersen, C. J. J. Org. Chem. 1971, 36, 1690–1693.
Goswami, S.; Dey, S. J. Org. Chem. 2006, 71, 7280–7287. and references cited
therein.
the downfield chemical shifts of 0.50, 0.29, 0.16 ppm, respectively.
This clearly indicated the participation of the peri proton in the for-
mation of hydrogen bond with the urea carbonyl oxygen of the
5. Mazic, M.; Kuschel, M.; Sicking, W. Org. Lett. 2006, 8, 855–858. and references
cited therein.
guests. Negligible changes in chemical shift of H
b
of 1 in the pres-
6
7
.
.
Goswami, S.; Ghosh, K.; Dasgupta, S. J. Org. Chem. 2000, 65, 1907–1914.
Wang, H.; Chan, W.-H.; Lee, A. W. M. Org. Biomol. Chem. 2006, 6, 929–934.
0
ence of thiourea and N,N -dimethylurea corroborated their weak
interaction compared to urea (for urea see supplementary data).
It is also of note that in the 1:1 complex of 1 with biotin methyl es-
ter, the cyclic urea protons of biotin ester exhibited an upfield
chemical shift with respect to the guest (biotin ester) itself. More-
over, the signals for aromatic protons of benzthiazole moiety
shifted drastically, demonstrating probably a subtle conforma-
tional change of benzthiazole moiety in 1 during the course of
binding of biotin methyl ester in solution phase. This experiment
thus confirmed that biotin ester forms a hydrogen-bonded com-
plex in the mode as shown in Figure 1a, where the cyclic urea part
instead of more bulkier ester group of biotin is involved in the
complexation into the isophthaloyl diamide core.
8. Nelson, D. L.; Cox, M. M. Lehninger Principles of Biochemistry, 3rd ed.; Worth:
New York, 2000.
9.
Traub, W. Nature 1956, 178, 649.
10. Traub, W. Science 1959, 129, 210.
11. De Titta, G. T.; Edmouds, J. W.; Stallings, W.; Donohue, J. J. Am. Chem. Soc 1976,
98, 1920–1926. and references cited therein.
12. (a) Adrian, J. C., Jr.; Wilcox, C. S. J. Am. Chem. Soc. 1989, 111, 8055–8057; (b) Rao,
P.; Maitra, U. Supramol. Chem. 1998, 9, 325.
13. Herranz, F.; Santa-María, M. D.; Claramunt, R. M. J. Org. Chem. 2006, 71, 2944–
2951.
1
1
1
4. Cooke, I. J. Nature 1962, 194, 1262–1263.
5. Morris, J. G.; Payne, E. J. Agric. Sci. 1970, 74, 259–271.
6. Goswami, S.; Mukherjee, R.; Ray, J. Org. Lett. 2005, 7, 1283–1285.
17. Chetia, B.; Iyer, P. K. Tetrahedron Lett. 2006, 47, 8115–8117.
18. van Staveren, C. J.; Aarts, V. M. L. J.; Grootenhuis, P. D. J.; Droppers, W. J. H.; van
Eerden, J.; Harkema, S.; Reinhoudt, D. N. J. Am. Chem. Soc. 1988, 110, 8134–
In conclusion, we have shown that receptor 1 which is simple
and easy-to-make, can bind biotin ester and urea with moderate
binding constant values. The detection of these biologically rele-
vant guests is possible by fluorescence. The significant change in
emission of 1 in the presence of biotin methyl ester and urea
clearly distinguishes them from thiourea and substituted N,N’-
dimethylurea. The distinction is best possible in less polar solvent
8
144. and references cited therein.
19. van Staveren, C. J.; van Eerden, J.; Veggel, F. C. J. M.; Herkema, S.; Reinhoudt, D.
N. J. Am. Chem. Soc. 1988, 110, 4994–5008.
0. Bell, T. W.; Liu, J. J. Am. Chem. Soc. 1988, 110, 3673–3674.
1. Fisher, M. G.; Gale, P. A.; Light, M. E. New J. Chem. 2007, 31, 1583–1584.
22. Goswami, S.; Mukherjee, R. Tetrahedron Lett. 1997, 38, 1619–1622.
3. Ghosh, K.; Adhikari, S.; Frohlich, R. Tetrahedron Lett. 2008, 49, 5063–5066.
4. Colquhoun, H. M.; Zhu, Z.; Cardin, C. J.; Gan, Y.; Drew, M. G. B. J. Am. Chem. Soc.
2
2
2
2
2
007, 129, 16163–16174.
1
and in the present case CHCl
3
containing 1% CH
3
CN is the excellent
25. Mp 198 °C; H NMR (400 MHz, CDCl ) d 12.18 (br s, 2H, amide NH), 8.20 (s, 1H),
3
choice as solvent in monitoring the host–guest interaction effec-
tively. Further work in this direction is underway in our laboratory.
7.82 (d, 2H, J = 7.6 Hz), 7.73 (s, 2H), 7.67 (d, 2H, J = 7.6 Hz), 7.43 (t, 2H,
J = 7.6 Hz), 7.33 (t, 2H, J = 7.6 Hz), 3.99 (t, 2H, J = 6 Hz), 1.80–1.77 (m, 2H), 1.46–