F. Hannig et al. / Journal of Organometallic Chemistry 690 (2005) 5959–5972
5967
2
3J(H,H) = 7.6 Hz, J(H,H) = 16.0 Hz 1H, 60-H); 1.82
3J(H,H) = 7.5 Hz, 3H, 3.3 or 1.3 (III, IV)-H); 0.92 (2· t,
3J(H,H) = 7.5 Hz, each 3H, 3.3 or 1.3 (III, IV)-H).
13C{1H} NMR (150 MHz, 298 K, CDCl3): d = 171.38 (C,
(m, 2H, 1.2-H); 1.81 (m, 2H, 3.2-H); 1.41 (s, 9H,
3
C(CH3)3); 0.95 (t, J(H,H) = 7.3 Hz, 3H, 3.3-H); 0.91 (t,
3J(H,H) = 7.3 Hz, 3H, 1.3-H). 13C{1H} NMR (150 MHz,
298 K, CD2Cl2): d = 181.2 (C, C2); 171.7 (C, C8); 155.5
(C, C9); 129.9 (C, C4); 119.4 (CH, C5); 80.6 (C, C(CH3)3);
52.9 (CH, C7); 54.1 (CH2, C1.1); 53.0 (CH3, O–CH3); 51.0
(CH2, C3.1); 27.8 (CH2, C6); 28.3 (CH3, C(CH3)3); 25.5
(CH2, C3.2); 25.0 (CH2, C1.2); 11.3 (CH3, C3.3); 11.2 (CH3,
C
8(I + II)); 170.02 (C, C2(I)); 169.99 (C, C2(II)); 169.83,
169.77, (C, C2(isomers)); 167.27 (C, C9(I + II)); 167.20 (C,
9(isomer)); 133.10 (C, i-Ph(I + II)); 131.96 (CH, p-
C
Ph(I + II)); 128.60 (CH, m-Ph(I + II)); 128.40, 128.31,
128.29 (C, C4(isomers)); 128.19 (C, C4(I)); 128.17 (C, C4(II));
127.09 (CH, o-Ph(I + II)); 119.13, 118.73, 118.70, 118.59,
118.57 (CH, C5(isomers)); 118.56 (CH, C5(II)); 118.44 (CH,
C1.3). HR-MS (C36H62Ag2Br2N6O8, MW = 1082.46) (ESI,
LM [CHCl3/CH3CN], m/z): calc.: 813.3675/814.3705/
815.3677/816.3705/817.3731; found: 813.3640/814.3684/
C
5(I)); 52.92 (CH3, O–CH3(II)); 52.90 (CH3, O–CH3(I));
52.42, 52.39, 52.37, 52.33 (CH2, C1.1(isomers)); 52.26 (CH2,
1.1(II)); 52.22 (CH2, C1.1(I)); 51.61, 51.57 (CH, C7(isomers));
815.3641/816.3678/817.33697
[C36H62AgN6O8]
[M ꢀ
C
+
~
AgBr2] . IR (KBr): m ¼ 3387 ðbrÞ, 3113 (w), 2965 (s),
2930 (s), 2869 (w), 1752 (s), 1717 (vs), 1617 (w), 1517 (w),
1456 (s), 1365 (s), 1252 (s), 1161 (vs), 1056 (w), 1017 (w),
861 (vw), 783 (w), 639 (w), 461 (w). [a]20 (k) = +25.8
(589), +27.2 (578), +31.1 (546), +55.3 (436), +94.2 (365)
(c = 10.9, CHCl3).
51.50 (CH, C7(I + II)); 49.29, 49.18 (CH, C3.1(isomers));
49.04 (CH, C3.1(I + II)); 26.77 (br, CH2, C6(isomers)); 26.73
(CH2, C6(I + II)); 24.66 (CH2, C3.2(I)); 24.59 (CH2, C3.2(II));
24.43, 24.38 (CH2, C1.2(isomers)); 24.26 (CH2, C1.2(I));,
24.14 (CH2, C1.2(II)); 24.07, 23.97 (CH2, C1.2(isomers));
11.39 (CH3, C3.3(II)); 11.37 (CH3, C3.3(I)); 11.29 (CH3,
C1.3(I)); 11.27 (CH3, C1.3(II)). HR-MS (C40H54Cl2N6O6Pd,
4.13. Preparation of the palladium complexes: general
procedure
MW = 892.22) (ESI, LM[CHCl3/CH3CN], m/z): calc.:
853.2829/854.2843/855.2834/8562844/857.2827/858.2853/
859.2832/860.2857/861.2839; found: 853.2827/854.2769/
855.2789/856.2811/857.2780/858.2789/859.2799/860.2823/
861.2843 [C40H54ClN6O6Pd]+ [M ꢀ Clꢀ]+. IR (KBr):
Silver oxide (0.52 g molar equiv.) ware added to a solu-
tion of the respective histidinium salt in dichloromethane.
The mixture is stirred in the dark for 1 h at ambient tem-
perature. Then 0.50 molar equiv. of Pd(CH3CN)2Cl2 in
abs. CH2Cl2 is added and the mixture again stirred for
1 h at room temperature. Silver halide is precipitated dur-
ing this time and the solution decanted from the precipi-
tate. Solvent was removed in vacuo and the product
dried in vacuo.
~
m ¼ 3321 ðbrÞ, 3121 (w), 3056 (w), 2961 (s), 2930 (s),
2874 (w), 1743 (vs), 1647 (vs), 1535 (s), 1465 (w), 1426
(w), 1343 (w), 1269 (w), 1217 (w), 1100 (w), 1022 (s), 809
(s), 713 (s), 683 (s). [a]20 (k) = +34 (589), +36 (578), +41
(546), +74 (436) (c = 10.25, CHCl3) (see Fig. 5).
4.13.2. Preparation of 12b
According to the general procedure, 1.26 g (2.61 mmol)
of 9a was treated with Ag2O (0.39 g, 1.70 mmol) and then
Pd(CH3CN)2Cl2 (0.26 g, 1.45 mmol) to yield 1.90 g (82%)
of 12b, mp 62 ꢀC (DSC). The NMR analysis revealed the
presence of four diastereoisomers (I–IV). 1H NMR
(600 MHz, 298 K, CDCl3): d = 6.65, 6.65, 6.64 (s, 1H,
5(II–IV)-H); 6.63 (s, 1H, 5(I)-H); 5.11 (d, 3J(H,H) =
8.1 Hz, 1H, N–H); 4.55 (m, 1H, 7-H); 4.41 (m, 2H, 1.1-
H); 4.33 (m, 2H, 3.1-H) 4.33 (m, isomers of 1.1 or
4.13.1. Reaction of in situ generated 11a with Pd(CH3CN)2-
Cl2: preparation of 12a
The carbene silver complex 11a was in situ generated by
treatment of 8a (2.00 g, 4.58 mmol) with 0.62 g (2.68 mmol)
of Ag2O in dichloromethane, as described in the general
procedure, followed by the reaction with 0.59 g
(2.28 mmol) of Pd(CH3CN)2Cl2 to yield 3.51 g (86%) of
complex 12a, mp 80 ꢀC (DSC). The NMR analysis revealed
the presence of four diastereoisomers (I–IV). 1H NMR
(600 MHz, 298 K, CDCl3): d = 7.74 (m, 2H, o-Ph(I + II));
7.46 (m, 1H, p-Ph(I + II)); 7.39 (m, 2H, m-Ph(I + II); 6.86
3
3.1-H); 3.70 (s, 3H, O–Me); 3.02 (dd, J(H,H) = 4.5 Hz,
2J(H-H) = 15.8 Hz, 1H, 6(I)-H); 2.91 (dd, 3J(H,H) =
2
6.8 Hz, J(H,H) = 15.8 Hz, 1H, 6(I)-H0); 2.10 (m, 2H,
3
3
(d, J(H,H) = 7.4 Hz, 1H, N–H(III)); 6.85 (d, J(H,H) =
3.2-H); 2.03 (m, 2H, 1.2-H); 1.40 (s, 9H, C(CH3)3(I));
3
3
7.6 Hz, 1H, N–H(I)); 6.82 (d, J(H,H) = 7.7 Hz, 1H, N–
1.39, 1.37 (s, 9H, C(CH3)3(isomers)); 1.03 (t, J(H,H) =
H(II + IV)); 6.65 (s, 1H, 5(III)-H); 6.64 (s, 1H, 5(I)-H);
6.63 (s, 1H, 5(II)-H); 5.01 (m, 1H, 7(I)-H); 5.00 (m, 1H,
7(II)-H); 4.46–4.30 (m, each 1H, 3.1(I–IV)-H); 4.39–4.31
(m, each 2H, 1.1(I–IV)-H); 4.27–3.19 (m, each 1H, 3.10(I–
IV)-H); 3.72 (s, 3H, O–CH3(I + II)); 3.71, 3.70 (s, 3H, O–
CH3(III + IV)); 3.16 (m, each 2H, 6(I–IV)-H); 2.14–1.95
(m, each 2H, 3.2(I–IV)-H and 3.2(I–IV)-H0); 1.00 (t,
3J(H,H) = 7.3 Hz, 3H, 3.3(I)-H); 0.99 (t, 3J(H,H) = 7.3 Hz,
7.0 Hz, 3H, 1.3(I)-H); 1.05, 1.03, 1.02 (each t,
3J(H,H) = 6.6–7.7 Hz, each 3H, 1.3-H(isomers)); 0.99
3
(t, J(H,H) = 7.3 Hz, 3H, 3.3(I)-H); 1.01, 1.00, 0.98 (each
t, 3J(H,H) = 6.6–7.7 Hz, each 3H, 3.3-H(isomers)). 13C-
{1H} NMR (150 MHz, 298 K, CHCl3): d = 171.7 (C, C8);
169.84, 169.82 (I), 169.60, 169.58, 169.20, 169.17 (C, C2);
155.0 (C, C9); 128.57, 128.53, 128.44, 128.42, 128.31 (I),
128.28 (C, C4); 118.56, 118.42, 118.28 (I), 118.15 (CH,
C5); 80.43 (C, C(CH3)3); 52.81 (CH3, O–Me(I)); 52.80
(CH3, O–Me(II)) 52.58, 52.52, 52.48, 52.46, 52.42, 52.41,
52.33, 52.28 (I) (CH2, C1.1); 51.90, 51.85 (CH, C7); 49.40,
3
3H, 3.3(II)-H); 0.97 (t, J(H,H) = 7.6 Hz, 3H, 1.3(II)-H);
0.96 (t, 3J(H,H) = 7.5 Hz, 3H, 1.3(I)-H); 0.94 (t,
3J(H,H) = 7.5 Hz, 3H, 3.3 or 1.3 (III, IV)-H); 0.93 (t,