10.1002/asia.201601689
Chemistry - An Asian Journal
COMMUNICATION
[9]
M. Alonso, P. Geerlings, F. D. Proft, J. Org. Chem. 2013, 78, 4419.
In order to gain more information, we performed DFT
calculations of 11, 12, 13, and 13-Möbius with B3LYP/6-31G(d)
level.[19] These calculations have revealed nearly degenerate
HOMO/HOMO-1 and LUMO/LUMO+1 for 11 and 12 as an
indication that these two pentaphyrins are both aromatic species.
Namely, the HOMO-LUMO gaps for 11 and 12 have been
calculated to be 2.05 and 2.01 eV, respectively. On the other hand,
the HOMO-LUMO gap of 13, 1.63 eV, has been calculated to be
relatively small, while that of 13-Möbius has been calculated to
be 1.90 eV. These calculations have indicated that 13 is more
stable than 12 by 13.1 kcal/mol, supporting the observed
spontaneous N-fusion reaction of 12, and 13 is slightly more
stable than 13-Möbius by 0.21 kcal/mol, in line with the observed
predominant distribution of 13 over 13-Möbius. The nucleus-
independent chemical shift (NICS) values[20] at the center of the
macrocycle have been calculated to be -15.54 and -15.31 ppm for
11 and 12, respectively. These results are in line with the strong
aromaticity of non-fused pentaphyrins. The calculated NICS(0)
value of -0.53 ppm for 13 suggests its nonaromatic character,
while that of 13-Möbius is -10.07 ppm, strongly supporting its
Möbius aromatic character (SI).
[10] a) P. S. Clezy, A. W. Nichol, Aust. J. Chem. 1965, 18, 1835; b) C. K.
Chang, J. Org. Chem. 1981, 46, 4610.
[11] Crystal data for 11, 2(C53H21F20N5)·(pentane) (Mr
= 2275.55),
orthorhombic, space group Pbcn (No. 60), a = 35.84(2), b = 10.112(6), c
= 27.180(17) Å, V = 9850(10) Å3, Z = 4, calcd = 1.535 gcm-3, T = 93(2) K,
R1 = 0.0769 (I >2(I)), wR2 = 0.2304 (all data),GOF = 0.987. CCDC =
1519168.
[12] J. B. Paine III, D. Dolphin, J. Org. Chem. 1988, 53, 2787.
[13] Crystal data for 12, C57H25F20N5O4·(pentane) (Mr =1295.97), monoclinic,
space group P21/c (No. 14), a = 19.9549(4), b = 14.3564(3), c =
20.0023(4) Å, = 104.0506(7)° V = 5558.8(2) Å3, Z = 4, calcd = 1.269
gcm-3, T = 93(2) K, R1 = 0.0749 (I >2(I)), wR2 = 0.2360 (all data), GOF
= 1.046. CCDC = 1519169
[14] A similar color alteration was observed in the case of 11 in methanol.
However, much inseparable byproducts were also observed.
[15] Crystal data for 13, 2(C57H25F20N5O4)·0.5(nonane) ·1.5(chlorobenzene)
(Mr = 2670.51), triclinic, space group P-1 (No. 2), a = 14.024(4), b =
20.155(6), c = 22.672(4) Å, α = 64.022(19) = 79.54(4) = 88.32(3) V =
5656(3) Å3, Z = 4, calcd = 1.568 g cm-3, T = 93(2) K, R1 = 0.1162 (I >2(I)),
wR2 = 0.3468 (all data),GOF = 1.182. CCDC = 1519170. The high R1
value is derived from the weakness of diffraction spots and the disorders
of solvent molecules, but the Hückel structure of 13 is unambiguously
assigned.
In summary, we have synthesized chemically stable meso-
free pentaphyrins 11 and 12. While 12 was much more stable in
CH2Cl2, it underwent a smooth N-fusion reaction in methanol to
give N-fused pentaphyrin 13, which displayed crystal
polymorphism, taking either Hückel or Möbius conformation
depending upon recrystallization solvents. Exploration of new
hybrid expanded porphyrins bearing meso-aryl and -alkyl
substituents are now being investigated in our laboratory.
[16] Polymorphism; a) J. D. Dunitz, J. Bernstein, Acc. Chem. Res. 1995, 28,
193. b) J. Bernstein, R. J. Davey, J.-O. Henck, Angew. Chem. Int. Ed.
1999, 38, 3440; Angew. Chem.1999, 111, 3646. c) A. Nangia, Acc. Chem.
Res. 2008, 41, 595.
[17] Crystal data for 13-Möbius, 2(C57H25F20N5O4)·5(cyclohexane) (Mr =
2868.42), monoclinic, space group P21/c (No. 14), a = 23.178(4), b =
20.822(3), c = 28.691(5) Å, = 96.365(5) V = 13763(4) Å3, Z = 4, calcd
=
1.384 gcm-3, T = 93(2) K, R1 = 0.0834 (I >2(I)), wR2 = 0.2632 (all data),
GOF = 1.012. CCDC = 1519171.
[18] Examples of solvent-dependent Hückel-Möbius conformational changes
of expanded porphyrins; a) J. Sankar, S.Mori, S. Saito, H. Rath, M.
Suzuki, Y. Inokuma, H. Shinokubo, K. S. Kim, Z. S. Yoon, J.-Y. Shin, J.
M. Lim, Y. Matsuzaki, O. Matsushita, A. Muranaka, N. Kobayashi, D. Kim,
A. Osuka, J. Am. Chem. Soc. 2008, 130, 13568; b) S. Saito, J.-Y. Shin,
J. M. Lim, K. S. Kim, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 2008, 47,
9657; Angew. Chem. 2008, 120, 9803; c) M.-C. Yoon, J.-Y. Shin, J. M.
Lim, S. Saito, T. Yoneda, A. Osuka, D. Kim, Chem. Eur. J. 2011, 17,
6707; d) T. Yoneda, Y. M. Sung, J. M. Lim, D. Kim, A. Osuka, Angew.
Chem. Int. Ed. 2014, 53, 13169; Angew. Chem. 2014, 126, 13385.
[19] Topological switching of N-fused [24]pentaphyrins; a) S. Mori, J.-Y. Shin,
S. Shimizu, F. Ishikawa, H. Furuta, A. Osuka, Chem. Eur. J. 2005, 11,
2417; b) J. K. Park, Z. S. Yoon, M.-C. Yoon, K. S. Kim, S. Mori, J.-Y. Shin,
A. Osuka, D. Kim, J. Am. Chem. Soc. 2008, 130, 1824; c) S.-i. Ishida, J.
O. Kim, D. Kim, A. Osuka, Chem. Eur. J. 2016, 22, 16554.
Acknowledgements
This work was supported by JSPS KAKENHI Grant Numbers
26460031 and 20249072 and the Program to Disseminate Tenure
Tracking System from MEXT of Japan. We thank Dr. Takayuki
Tanaka and Prof. Dr. Atsuhiro Osuka (Kyoto University) for X-ray
crystallography and cyclic voltammetry measurements.
Keywords: expanded porphyrin • pentaphyrin• aromaticity •
fusion reaction • crystal polymorphism
[19] M. J. Frisch. et al., Gaussian09, revision A.02; Gaussian, Inc.:
Wallingford, CT, 2009 (Full citation in SI).
[1]
a) J. L. Sessler, D. Seidel, Angew. Chem. Int. Ed. 2003, 42, 5134; Angew.
Chem. 2003, 115, 5292; b) T. K. Chandrashekar, S. Venkatraman, Acc.
Chem. Res. 2003, 36, 676; c) M. Stępień, N. Sprutta, L. Latos-Grażyński,
Angew. Chem. Int. Ed. 2011, 50, 4288; Angew. Chem. 2011, 123, 4376;
d) S. Saito, A. Osuka, Angew. Chem. Int. Ed. 2011, 50, 4342; Angew.
Chem. 2011, 123, 4432; e) T. Tanaka, A. Osuka, Chem. Rev. 2016;
DOI:10.1021/acs.chemrev.6b00371.
[20] a) P. von R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. v. E.
Hommes, J. Am. Chem. Soc. 1996, 118, 6317; b) Z. Chen, C. S.
Wannerere, C. Corminboeuf, R. T. Puchta, P. von R. Schleyer, Chem.
Rev. 2005, 105, 3842.
[2]
[3]
J.-Y. Shin, H. Furuta, K. Yoza, S. Igarashi, A. Osuka, J. Am. Chem. Soc.
2001, 123, 7190
a) H. Rexhausen, A. Gossauer, J. Chem. Soc., Chem. Commun. 1983,
275; b) A. K. Burrell, G. Hemmi, V. Lynch, J. L. Sessler, J. Am. Chem.
Soc. 1991, 113, 4690.
[4]
[5]
C. Bruckner, E. D. Sternberg, R. W. Boyle, D. Dolphin, Chem. Commun.
1997, 1689.
J.-Y. Shin, H. Furuta, A. Osuka, Angew. Chem. Int. Ed. 2001, 40, 619;
Angew. Chem. 2001, 113, 639.
[6]
[7]
S. Shimizu, N. Aratani, A. Osuka, Chem. Eur. J. 2006, 12, 4909.
M. Alonso, P. Geerlings, F. D. Proft, Phys. Chem. Chem. Phys. 2014, 16,
14396.
[8]
T. Yoneda, H. Mori, B. S. Lee, M.-C. Yoon, D. Kim, A. Osuka, Chem.
Commun. 2012, 48, 6785.
This article is protected by copyright. All rights reserved.