Letters
In summary, substituted dipiperidine compounds have been
Journal of Medicinal Chemistry, 2007, Vol. 50, No. 23 5563
(12) Pinkerton, A. B.; Huang, D.; Cube, R. V.; Hutchinson, J. H.; Struthers,
M.; Ayala, J. M.; Vicario, P. P.; Patel, S. R.; Wisniewski, T.;
DeMartino, J. A.; Vernier, J. Diaryl substituted pyrazoles as potent
CCR2 receptor antagonists. Bioorg. Med. Chem. Lett. 2007, 17, 807-
813.
(13) Zhou, C.; Guo, L.; Parsons, W. H.; Mills, S. G.; MacCoss, M.;
Vicario, P. P.; Zweerink, H.; Cascieri, M. A.; Springer, M. S.; Yang,
L. R-Aminothiazole-γ-aminobutanoic amides as potent, small mol-
ecule CCR2 receptor antagonists. Bioorg. Med. Chem. Lett. 2007,
17, 309-314.
(14) Pasternak, A.; Marino, D.; Vicario, P. P.; Ayala, J. M.; Cascierri,
M. A.; Parsons, W.; Mills, S. G.; MacCoss, M.; Yang, L. Novel,
orally bioavailable γ-aminoamide CC chemokine receptor 2 (CCR2)
antagonists. J. Med. Chem. 2006, 49, 4801-4804.
synthesized and identified as selective CCR2 antagonists.
Carboxylic acid analogues 6a-z exhibited remarkable affinity
in a human CCR2 binding assay. They had much higher affinity
than the corresponding ester (1a) or amide (1b). Compound 7a
had excellent selectivity for CCR2 over CCR1, CCR3, CCR4,
CCR5, CCR6, CCR7, CCR8 and showed significant in vivo
efficacy in adjuvant-induced arthritis, collagen-induced arthritis,
and allergic asthma models in rats and mice. An in depth
biological profile of 7a and systematic SAR studies of the
dipiperidine scaffold will be reported in due course.
(15) Yang, L.; Zhou, C.; Guo, L.; Morriello, G.; Butora, G.; Pasternak,
A.; Parsons, W. H.; Mills, S. G.; MacCoss, M.; Vicario, P. P.;
Zweerink, H.; Ayala, J. M.; Goyal, S.; Hanlon, W. A.; Cascieri, M.
A.; Springer, M. S. Discovery of 3,5-bis(trifluoromethyl)benzyl
l-arylglycinamide based potent CCR2 antagonists. Bioorg. Med.
Chem. Lett. 2006, 16, 3735-3739.
(16) Brodmerkel, C. M.; Huber, R.; Covington, M.; Diamond, S.; Hall,
L.; Collins, R.; Leffet, L.; Gallagher, K.; Feldman, P.; Collier, P.;
Stow, M.; Gu, X.; Baribaud, F.; Shin, N.; Thomas, B.; Burn, T.;
Hollis, G.; Yeleswaram, S.; Solomon, K.; Friedman, S.; Wang, A.;
Xue, C. B.; Newton, R. C.; Scherle, P.; Vaddi, K. Discovery and
pharmacological characterization of a novel rodent-active CCR2
antagonist, INCB3344. J. Immunol. 2005, 175, 5370-5378.
(17) Feria, M.; Diaz-Gonzalez, F. The CCR2 receptor as a therapeutic
target. Expert Opin. Ther. Pat. 2006, 16, 49-57.
(18) Van Lommen, G.; Doyon, J.; Coesemans, E.; Boeckx, S.; Cools, M.;
Buntinx, M.; Hermans, B.; Van Wauwe, J. 2-Mercaptoimidazoles, a
new class of potent CCR2 antagonists. Bioorg. Med. Chem. Lett.
2005, 15, 497-500.
(19) Moree, W. J.; Kataoka, K.; Ramirez-Weinhouse, M. M.; Shiota, T.;
Imai, M.; Sudo, M.; Tsutsumi, T.; Endo, N.; Muroga, Y.; Hada, T.;
Tanaka, H.; Morita, T.; Greene, J.; Barnum, D.; Saunders, J.; Kato,
Y.; Myers, P. L.; Tarby, C. M. Small molecule antagonists of the
CCR2b receptor. Part 2: discovery process and initial structure-
activity relationships of diamine derivatives. Bioorg. Med. Chem.
Lett. 2004, 14, 5413-5416.
Acknowledgment. We thank Dr. William Murray for
support and Dr. Mark Macielag, Dr. Peter Connolly, and Dr.
Zhihua Sui for helpful discussions.
Supporting Information Available: Experimental details of
the synthesis and characterization of representative CCR2 antago-
nists. This material is available free of charge via the Internet at
References
(1) Carulli, M. T.; Ong, V. H.; Ponticos, M.; Xu, S.; Abraham, D. J.;
Black, C. M.; Denton, C. P. Chemokine receptor CCR2 expression
by systemic sclerosis fibroblasts: evidence for autocrine regulation
of myofibroblast differentiation. Arthritis Rheum. 2005, 52, 3772-
3782.
(2) Weisberg, S. P.; Hunter, D.; Huber, R.; Lemieux, J.; Slaymaker, S.;
Vaddi, K.; Charo, I.; Leibel, R. L.; Ferrante, A. W., Jr. CCR2
modulates inflammatory and metabolic effects of high-fat feeding.
J. Clin. InVest. 2006, 116, 115-124.
(3) Charo, I. F.; Taubman, M. B. Chemokines in the Pathogenesis of
vascular disease. Circ. Res. 2004, 95, 858-866.
(4) Kitagawa, K.; Wada, T.; Furuichi, K.; Hashimoto, H.; Ishiwata, Y.;
Asano, M.; Takeya, M.; Kuziel, W. A.; Matsushima, K.; Mukaida,
N.; Yokoyama, H. Blockade of CCR2 ameliorates progressive fibrosis
in kidney. Am. J. Pathol. 2004, 165, 237-246.
(5) Dawson, J.; Miltz, W.; Mir, A. K.; Wiessner, C. Targeting monocyte
chemoattractant protein-1 signalling in disease. Expert Opin. Ther.
Targets 2003, 7, 35-48.
(6) Rollins, B. J. Monocyte chemoattractant protein 1: a potential
regulator of monocyte recruitment in inflammatory disease. Mol. Med.
Today 1996, 2, 198-204.
(7) Ogilvie, P.; Thelen, S.; Moepps, B.; Gierschik, P.; da Silva Campos,
A. C.; Baggiolini, M.; Thelen, M. Unusual chemokine receptor
antagonism involving a mitogen-activated protein kinase pathway.
J. Immunol. 2004, 172, 6715-6722.
(8) Belvisi, M. G.; Hele, D. J.; Birrell, M. A. New anti-inflammatory
therapies and targets for asthma and chronic obstructive pulmonary
disease. Expert Opin. Ther. Targets 2004, 8, 265-285.
(9) Tsutsumi, C.; Sonoda, K.; Egashira, K.; Qiao, H.; Hisatomi, T.;
Nakao, S.; Ishibashi, M.; Charo, I. F.; Sakamoto, T.; Murata, T.;
Ishibashi, T. The critical role of ocular-infiltrating macrophages in
the development of choroidal neovascularization. J. Leukocyte Biol.
2003, 74, 25-32.
(10) Conrad, S. M.; Strauss-Ayali, D.; Field, A. E.; Mack, M.; Mosser,
D. M. Leishmania-derived murine monocyte chemoattractant protein
1 enhances the recruitment of a restrictive population of CC
chemokine receptor 2-positive macrophages. Infect. Immun. 2007,
75, 653-665.
(11) Seitz, M.; Loetscher, P.; Dewald, B.; Towbin, H.; Rordorf, C.; Gallati,
H.; Gerber, N. J. Interleukin 1 (IL-1) receptor antagonist, soluble
tumor necrosis factor receptors, IL-1.beta., and IL-8-markers of
remission in rheumatoid arthritis during treatment with methotrexate.
J. Rheumatol. 1996, 23, 1512-1516.
(20) Kettle, J. G.; Faull, A. W.; Barker, A. J.; Davies, D. H.; Stone, M.
A. N-Benzylindole-2-carboxylic acids: potent functional antagonists
of the CCR2b chemokine receptor. Bioorg. Med. Chem. Lett. 2004,
14, 405-408.
(21) Gao, Z.; Metz, W. A. Unraveling the chemistry of chemokine receptor
ligands. Chem. ReV. 2003, 103, 3733-3752.
(22) Witherington, J.; Bordas, V.; Cooper, D. G.; Forbes, I. T.; Gribble,
A. D.; Ife, R. J.; Berkhout, T.; Gohil, J.; Groot, P. H. E. Conforma-
tionally restricted indolopiperidine derivatives as potent CCR2B
receptor antagonists. Bioorg. Med. Chem. Lett. 2001, 11, 2177-2180.
(23) Forbes, I. T.; Cooper, D. G.; Dodds, E. K.; Hickey, D. M. B.; Ife, R.
J.; Meeson, M.; Stockley, M.; Berkhout, T. A.; Gohil, J.; Groot, P.
H. E.; Moores, K. CCR2B receptor antagonists: conversion of a weak
HTS hit to a potent lead compound. Bioorg. Med. Chem. Lett. 2000,
10, 1803-1806.
(24) Mirzadegan, T.; Diehl, F.; Ebi, B.; Bhakta, S.; Polsky, I.; McCarley,
D.; Mulkins, M.; Weatherhead, G. S.; Lapierre, J.-M.; Dankwardt,
J.; Morgans, D., Jr.; Wilhelm, R.; Jarnagin, K. Identification of the
binding site for a novel class of CCR2b chemokine receptor
antagonists: binding to a common chemokine receptor motif within
the helical bundle. J. Biol. Chem. 2000, 275, 25562-25571.
(25) Xia, M.; Hou, C.; Pollack, S.; Brackley, J.; DeMong, D.; Pan, M.;
Singer, M.; Matheis, M.; Olini, G.; Cavender, D.; Wachter, M.
Synthesis and biological evaluation of phenyl piperidine derivatives
as CCR2 antagonists. Bioorg. Med. Chem. Lett. 2007, 17, 5964-
5968.
JM070902B