Figure 1. Peptoid oligomers used in macrocyclization reactions. Peptoid linear-1 is an unstructured oligomer, whereas peptoids linear-2
to linear-5 contain helix-inducing R-chiral side chains.
helical conformation with a periodicity of three residues per
turn and a helical pitch of ∼6.7 Å.7 Additionally, we have
recently reported that intermolecular Cu-catalyzed azide-
alkyne [3+2] cycloaddition reactions proceed efficiently on
peptoid substrates bearing azidoalkyl or propargyl side chains
to form conjugates through 1,4-substituted triazole linkages.8
We sought to determine if peptoid helical propensity could
be exploited to enhance the efficiency of intramolecular
azide-alkyne [3+2] cycloaddition reactions by placing the
reactive species in close proximity within the foldamer
architecture.
available low-loading level resin that would allow for site
isolation (NovaSynTGR, 0.23 mmol g-1).
We first investigated the capability of the Cu-catalyzed
azide-alkyne [3+2] cycloaddition reaction to generate an
intramolecular cross-link within unstructured peptoid oligo-
mer linear-1. We anticipated that peptoids could potentially
form the desired intramolecular macrocycle products or
intermolecular cyclodimerization products, as observed for
polypeptides9 (Scheme 1). Peptoid linear-1 was synthesized
Our studies were initiated by employing standard solid-
phase peptoid synthesis techniques6a to generate one un-
structured (Figure 1, linear-1) peptoid octamer and five
structured (Figure 1, linear-2 to linear-5) peptoid octamers
including bulky R-chiral side chains. All peptoid oligomers
shown in Figure 1 incorporated azide and alkyne-function-
alized side chains at varying positions along the oligomer
scaffold. Peptoids were synthesized on a commercially
Scheme 1. Cyclization of linear-1 by Azide-Alkyne [3+2]
Cycloaddition
(5) (a) Bru, M.; Alfonso, I.; Burguete, M. I.; Luis, S. V. Tetrahedron
Lett. 2005, 46, 7781. (b) Zhang, A.; Han, Y.; Yamato, K.; Zeng, X. C.;
Gong, B. Org. Lett. 2006, 8, 803. (c) Rotger, C.; Pina, M. N.; Vega, M.;
Ballester, P.; Deya, P. M.; Costa, A. Angew. Chem., Int. Ed. 2006, 45, 6844.
(d) Bo¨hme, F.; Kunert, C.; Komber, H.; Voigt, D.; Friedel, P.; Khodja, M.;
Wilde, H. Macromolecules 2003, 35, 4233. (e) Xing, L.; Ziener, U.;
Sutherland, T. C.; Cuccia, L. A. Chem. Commun. 2005, 5751. (f) Hui, J.
K.-H.; MacLachlan, M. J. Chem. Commun. 2006, 2480. (g) Jiang, H.; Leger,
J.-M.; Guionneau, P.; Huc, I. Org. Lett. 2004, 6, 2985. (h) Le Grel, P.;
Salau¨n, A.; Potel, M.; Le Grel, B.; Lassagne, F. J. Org. Chem. 2006, 71,
5683. (i) Semetey, V.; Didierjean, C.; Briand, J.-P.; Aubry, A.; Guichard,
G. Angew. Chem. Int. Ed. 2002, 41, 1895. (j) Amor´ın, M.; Castedo, L.;
Ganja, J. J. Am. Chem. Soc. 2003, 125, 2844.
(6) (a) Zuckermann, R. N.; Kerr, J. M.; Kent, S. B. H.; Moos, W. H. J.
Am. Chem. Soc. 1992, 114, 10646. (b) Simon, R. J.; Kania, R. S.;
Zuckermann, R. N.; Huebner, V. D.; Jewell, D. A.; Banville, S.; Ng, S.;
Wang, L.; Rosenberg, S.; Marlowe, C. K.; Spellmeyer, D. C.; Tan, R.;
Frankel, A. D.; Santi, D. V.; Cohen, F. E.; Bartlett, P. A. Proc. Natl. Acad.
Sci. U.S.A. 1992, 89, 9367. (c) Patch, J. A.; Barron, A. E. Curr. Opin. Chem.
Biol. 2002, 6, 872.
(7) (a) Kirshenbaum, K.; Barron, A. E.; Goldsmith, R. A.; Armand, P.;
Bradley, E. R.; Truong, K. T. V.; Dill, K. A.; Cohen, F. E.; Zuckermann,
R. N. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 4303. (b) Armand, P.;
Kirshenbaum, K.; Goldsmith, R. A.; Farr-Jones, S.; Barron, A. E.; Truong,
K. T. V.; Dill, K. A.; Mierke, D. F.; Cohen, F. E.; Zuckermann, R. N.;
Bradley, E. K. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 4309. (c) Wu, C.
W.; Kirshenbaum, K.; Sanborn, T. J.; Patch, J. A.; Huang, K.; Dill, K. A.;
Zuckermann, R. N.; Barron, A. E. J. Am. Chem. Soc. 2003, 125, 13525.
(d) Farfarman, A.; Borbat, P. P.; Freed, J. H.; Kirshenbaum, K. Chem.
Commun. 2007, 377.
in high purity (>85%) on solid support and subjected to
macrocyclization in the presence of CuI, ascorbic acid (Vit.
C), and N,N′-diisopropylethylamine8 (DIPEA). Conducting
the reactions on solid support facilitated the use of a large
excess of Cu ions.10 Following extensive washing of the resin
to remove residual Cu, the products were cleaved from solid
support with 95% trifluoroacetic acid (TFA) in H2O. High-
(9) (a) Punna, S.; Kuzelka, J.; Wang, Q.; Finn, M. G. Angew. Chem.,
Int. Ed. 2005, 44, 2215. (b) van Maarseveen, J. H.; Horne, W. S.; Ghadiri,
M. R. Org. Lett. 2005, 7, 4503. (c) Angell, Y.; Burgess, K. J. Org. Chem.
2005, 70, 9595.
(10) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596. (b) Breinbauer, R.; Kohn, M.
ChemBioChem. 2003, 4, 1147. (c) Kolb, H. C.; Sharpless, K. B. Drug
DiscoVery Today 2003, 8, 1128.
(8) (a) Jang, H.; Farfarman, A.; Holub, J. M.; Kirshenbaum, K. Org.
Lett. 2005, 7, 1951. (b) Holub, J. M.; Jang, H.; Kirshenbaum, K. Org.
Biomol. Chem. 2006, 4, 1497.
3276
Org. Lett., Vol. 9, No. 17, 2007