Paper
NJC
12 (a) V. K. Praveen, C. Ranjith and N. Armaroli, Angew. Chem.,
Int. Ed., 2014, 53, 365–368; (b) L. Maggini and D. Bonifazi,
Chem. Soc. Rev., 2012, 41, 211–241; (c) D. W. Domaille,
E. L. Que and C. J. Chang, Nat. Chem. Biol., 2008, 4, 168–175.
13 (a) S. S. Babu, V. K. Praveen and A. Ajayaghosh, Chem. Rev.,
2014, 114, 1973–2129; (b) K. K. Kartha, R. D. Mukhopadhyay
and A. Ajayaghosh, Chimia, 2013, 67, 51–63; (c) S. S. Babu,
K. K. Kartha and A. Ajayaghosh, J. Phys. Chem. Lett., 2010, 1,
3413–3424.
14 (a) X. Yu, L. Chen, M. Zhang and T. Yi, Chem. Soc. Rev., 2014,
43, 5346–5371; (b) H. Kar, M. R. Molla and S. Ghosh, Chem.
Commun., 2013, 49, 4220–4222; (c) D. R. Trivedi and
P. Dastidar, Chem. Mater., 2006, 18, 1470–1478; (d) T. Kato,
N. Mizoshita and K. Kishimoto, Angew. Chem., Int. Ed., 2006,
45, 38–68.
indicated that the incipient gelation process was driven by
hydrophobic and aromatic–p interactions between the naphthal-
imide motifs, supplemented by hydrogen bonding between the
amide NH groups. The addition of fluoride caused disruption of
the hydrogen bonds involving the amide NH groups, which led to
switching of monomer–excimer fluorescence, and concomitant
gel-to-sol transition. Thus, we have illustrated a simple strategy
for the design of stimuli-responsive functional materials, wherein
the switching of monomer–excimer fluorescence emissions of bis-
naphthalimides could be triggered by the introduction anions as
chemical stimuli.
Acknowledgements
The authors gratefully acknowledge Department of Science &
Technology, India (DST-SR/FTP/CS-102/2007) and University Grants
Commission (UGC), India for funding and infrastructure facilities,
and CIF-IIT Guwahati for assistance with the SEM analysis.
15 (a) K. V. Rao, K. K. R. Datta, M. Eswaramoorthy and S. J.
George, Adv. Mater., 2013, 25, 1713–1718; (b) R. Rajaganesh,
A. Gopal, T. M. Das and A. Ajayaghosh, Org. Lett., 2012, 14,
748–751; (c) P. Duan, Y. Li, L. Li, J. Deng and M. Liu, J. Phys.
Chem. B, 2011, 115, 3322–3329.
16 (a) X. Yu, L. Chen, M. Zhang and T. Yi, Chem. Soc. Rev., 2014,
43, 5346–5371; (b) R. Afrasiabi and H.-B. Kraatz,
Chem. – Eur. J., 2013, 19, 1769–1777; (c) G. Cravotto and
P. Cintas, Chem. Soc. Rev., 2009, 38, 2684–2697.
17 (a) M. D. Segarra-Maset, V. J. Nebot, J. F. Miravet and
B. Escuder, Chem. Soc. Rev., 2013, 42, 7086–7098;
(b) T. Kar, S. Dutta and P. K. Das, Soft Matter, 2010, 6,
4777–4787; (c) A. Karmakar, R. J. Sarma and J. B. Baruah,
CrystEngComm, 2007, 9, 379–389.
18 (a) P. Rajamalli, S. Atta, S. Maity and E. Prasad, Chem. Commun.,
2013, 49, 1744–1746; (b) J. A. Foster, M.-O. M. Piepenbrock,
G. O. Lloyd, N. Clarke, J. A. K. Howard and J. W. Steed, Nat.
Chem., 2010, 2, 1037–1043; (c) S.-i. Kawano, N. Fujita and
S. Shinkai, J. Am. Chem. Soc., 2004, 126, 8592–8593.
Notes and references
1 J. Zhang, Q. Zou and H. Tian, Adv. Mater., 2013, 25, 378–399.
2 (a) X. Yang, G. Zhang and D. Zhang, J. Mater. Chem., 2012,
22, 38–50; (b) S.-H. Hwang, C. N. Moorefield and
G. R. Newkome, Chem. Soc. Rev., 2008, 37, 2543–2557.
3 (a) J. Malinge, C. Allain, A. Brosseau and P. Audebert, Angew.
Chem., Int. Ed., 2012, 51, 8534–8537; (b) A. H. Shelton,
I. V. Sazanovich, J. A. Weinstein and M. D. Ward, Chem.
Commun., 2012, 48, 2749–2751.
4 (a) S. Seo, Y. Kim, Q. Zhou, G. Clavier, P. Audebert and
E. Kim, Adv. Funct. Mater., 2012, 22, 3556–3561; (b) D. Kolosov,
V. Adamovich, P. Djurovich, M. E. Thompson and C. Adachi,
J. Am. Chem. Soc., 2002, 124, 9945–9954.
5 (a) K. Singh, D. Sareen, P. Kaur, H. Miyake and H. Tsukube, 19 (a) W. Edwards and D. K. Smith, Chem. Commun., 2012, 48,
Chem. – Eur. J., 2013, 19, 6914–6936; (b) D. Srikun, E. W.
Miller, D. W. Domaille and C. J. Chang, J. Am. Chem. Soc.,
2008, 130, 4596–4597.
6 R. M. Duke, E. B. Veale, F. M. Pfeffer, P. E. Kruger and
T. Gunnlaugsson, Chem. Soc. Rev., 2010, 39, 3936–3953.
7 (a) L. Zhang, D. Duan, Y. Liu, C. Ge, X. Cui, J. Sun and
2767–2769; (b) Z. Xu, J. Yoon and D. R. Spring, Chem.
Commun., 2010, 46, 2563–2565.
20 T. C. Barros, P. B. Filho, V. G. Toscano and M. J. Politi,
J. Photochem. Photobiol., A, 1995, 89, 141–146.
21 D. W. Cho, M. Fujitsuka, A. Sugimoto and T. Majima,
J. Phys. Chem. A, 2008, 112, 7208–7213.
J. Fang, J. Am. Chem. Soc., 2014, 136, 226–233; (b) B. H. 22 G. Loving and B. Imperiali, J. Am. Chem. Soc., 2008, 130,
Shankar and D. Ramaiah, J. Phys. Chem. B, 2011, 115,
13292–13299.
13630–13638.
23 (a) S. Banerjee, E. B. Veale, C. M. Phelan, S. A. Murphy,
G. M. Tocci, L. J. Gillespie, D. O. Frimannsson, J. M. Kelly
and T. Gunnlaugsson, Chem. Soc. Rev., 2013, 42, 1601–1618;
(b) X. Guo, X. Qian and L. Jia, J. Am. Chem. Soc., 2004, 126,
2272–2273.
8 C. Zhang, Z. Liu, Y. Li, W. He, X. Gao and Z. Guo, Chem.
Commun., 2013, 49, 11430–11432.
9 K. Hanaoka, Y. Muramatsu, Y. Urano, T. Terai and
T. Nagano, Chem. – Eur. J., 2010, 16, 568–572.
10 (a) G. T. Spence, M. B. Pitak and P. D. Beer, Chem. – Eur. J., 24 Y. Wang, F. Geng, Q. Cheng, H. Xu and M. Xu, Analyst, 2011,
2012, 18, 7100–7108; (b) V. F. Pais, P. Remon, D. Collado,
136, 4284–4288.
J. Andreasson, E. Perez-Inestrosa and U. Pischel, Org. Lett., 25 X. Qian, Y. Xiao, Y. Xu, X. Guo, J. Qian and W. Zhu, Chem.
2011, 13, 5572–5575. Commun., 2010, 46, 6418–6436.
11 (a) H.-H. Lin, Y.-C. Chan, J.-W. Chen and C.-C. Chang, 26 Z. Zhang, D. Wu, X. Guo, X. Qian, Z. Lu, Q. Xu, Y. Yand, L. Duan,
J. Mater. Chem., 2011, 21, 3170–3177; (b) P. A. Panchenko, Y. He and Z. Feng, Chem. Res. Toxicol., 2005, 18, 1814–1820.
Y. V. Federova, V. P. Perevalov, J. Gediminas and O. A. Federova, 27 D. W. Cho, M. Fujitsuka, K. H. Choi, M. J. Park, U. C. Yoon
J. Phys. Chem. A, 2010, 114, 4118–4122.
and T. Majima, J. Phys. Chem. B, 2006, 110, 4576–4582.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015