be generated through the COX pathway, was not detect-
able in the liver of control rats and rats treated with CCl4.
9. Forman, B. M., P. Tontonoz, C. Jasmine, R. P. Brun, B. M.
12,14
Spiegelman, and R. M. Evans. 1995. 15-deoxy-⌬
-prostaglandin
J2 is a ligand for the adipocyte determination factor PPAR␥. Cell.
83: 803–812.
This may be due to the rapid reactivity of 15-d-PGJ . Previ-
2
ous studies have indicated that cyclopentenone eico-
sanoids rapidly undergo conjugation with GSH in vitro
and in vivo (26–30). Brunoldi et al. (26) reported that
10. Halliwell, B., and J. M. Gutteridge. 1990. Role of free radicals and
catalytic metal ions in human disease: an overview. Methods Enzymol.
1
86: 1–85.
1
1
1
1
1. Southorn, P. A., and G. Powis. 1988. Free radicals in medicine. II.
Involvement in human disease. Mayo Clin. Proc. 63: 390–408.
2. Ames, B. N. 1983. Dietary carcinogens and anticarcinogens. Oxygen
radicals and degenerative diseases. Science. 221: 1256–1264.
3. Harman, D. 1981. The aging process. Proc. Natl. Acad. Sci. U S A. 78:
7124–7128.
HepG2 cells convert 15-d-PGJ to a GSH conjugate in
2
which the carbonyl on the prostane ring is reduced to a
hydroxyl, and the GSH portion of the molecule is subse-
quently hydrolyzed to a cysteine conjugate. Additionally,
Milne et al. (58) showed that the cyclopentone eicosanoid
4. Morrow, J. D., K. E. Hill, R. F. Burk, T. M. Nammour, K. F. Badr,
and L. J. Roberts II. 1990. A series of prostaglandin F -like com-
2
1
5-A -IsoP is metabolized primarily in vivo by conjugation
2t
pounds are produced in vivo in humans by a non-cyclooxygenase,
free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. U S A. 87:
9383–9387.
5. Stafforini, D. M., J. R. Sheller, T. S. Blackwell, A. Sapirstein, F.
E. Yull, T. M. McIntyre, J. V. Bonventre, S. M. Prescott, and L. J.
with GSH and that the compound is excreted into the
urine as the N-acetyl cysteine sulfoxide conjugate of 15-A -
2
t
1
IsoP in which the carbonyl on the prostane ring of the IsoP
is reduced to a hydroxyl. Preliminary studies suggest that,
Roberts II. 2006. Release of free F -isoprostanes from esterified
2
like other cyclopentenone eicosanoids, 15-d-PGJ is rap-
phospholipids is catalyzed by intracellular and plasma platelet-
activating factor acetylhydrolases. J. Biol. Chem. 281: 4616–4623.
6. Morrow, J. D., J. A. Awad, H. J. Boss, I. A. Blair, and L. J. Roberts II.
2
idly metabolized in vivo via conjugation with GSH and ex-
creted into the urine as a metabolized GSH adduct (data
not shown). Further studies are required to identify the
1
1
1
1
1
992. Non-cyclooxygenase-derived prostanoids (F -isoprostanes)
2
are formed in situ on phospholipids. Proc. Natl. Acad. Sci. USA. 89:
0721–10725.
1
major urinary metabolite of 15-d-PGJ to develop a bio-
2
7. Pryor, W. A., J. P. Stanley, and E. Blair. 1976. Autoxidation of
polyunsaturated fatty acids: II. A suggested mechanism for the for-
mation of TBA-reactive materials from prostaglandin-like endoper-
oxides. Lipids. 11: 370–379.
8. Morrow, J. D., T. M. Harris, and L. J. Roberts II. 1990. Noncy-
clooxygenase oxidative formation of a series of novel prostaglan-
dins: analytical ramifications for measurement of eicosanoids.
Anal. Biochem. 184: 1–10.
marker of its systemic production in humans. These studies
are critical to determine to what extent 15-d-PGJ is gener-
2
ated in vivo in humans and elucidate the mechanisms that
regulate its production.
In summary, we report the formation of cyclopentenone
eicosanoids 15-d-PGJ and deoxy-J -IsoPs in vivo via free
2
2
9. Morrow, J. D., T. A. Minton, C. R. Mukundan, M. D. Campbell, W.
E. Zachert, V. C. Daniel, K. F. Badr, I. K. Blair, and L. J. Roberts II.
1994. Free radical-induced generation of isoprostanes in vivo: evi-
dence for the formation of D-ring and E-ring isoprostanes. J. Biol.
Chem. 269: 4317–4326.
0. Taber, D. F., J. D. Morrow, and L. J. Roberts II. 1997. A nomencla-
ture system for the isoprostanes. Prostaglandins. 53: 63–67.
radical-catalyzed lipid peroxidation, independent of COX.
Deoxy-J -IsoPs represent a new class of reactive lipid per-
2
oxidation products that may exert unique biological ac-
tions relevant to the pathobiology of oxidant stress. This
study provides the rational basis with which to examine
2
the extent to which deoxy-J -IsoPs are generated in vivo in
21. Hirata, Y., H. Hayashi, S. Ito, Y. Kikawa, M. Ishibashin, M. Sudo,
H. Miyazaki, M. Fukushima, S. Narumiya, and O. Hayaishi. 1988.
2
humans. Additionally, future studies aimed at exploring
9
12
Occurrence of 9-deoxy-⌬ ,⌬ -13,14-dihydroprostaglandin D in
2
the biological activities of deoxy-J -IsoPs will likely yield in-
2
human urine. J. Biol. Chem. 263: 16619–16625.
sights into the pathophysiological consequences of their
formation in settings of oxidant stress.
2
2. Bell-Parikh, L. C., T. Ide, J. A. Lawson, P. McNamara, M. Reilly, and
1
2,14
G. A. FitzGerald. 2003. Biosynthesis of 15-deoxy-⌬
ligation of PPAR␥. J. Clin. Invest. 112: 945–955.
-PGJ and the
2
2
3. Attallah, A., W. Payakkapan, J. Lee, A. Carr, and E. Brazelton. 1974.
PGA: fact, not artifact. Prostaglandins. 5: 69–71.
REFERENCES
2
4. Jonsson, H. T., B. S. Middledtich, M. A. Schexnayder, and D. M.
Desiderio. 1976. 11,15,19-trihydroxy-9-ketoprost-13-enoic acid and
11,15,19-trihydroxy-9-ketoprosta-5, 13-dienoic acid in human semi-
nal fluid. J. Lipid Res. 17: 1–6.
1
. Hardman, J. G., and L. E. Limbird, editors. 2001. Goodman and
Gilman’s The Pharmacological Basis of Therapeutics. 10th edition.
McGraw-Hill Book Co, NY. 669–679.
. Marnett, L. J. 2000. Cyclooxygenase mechanisms. Curr. Opin. Chem.
Biol. 4: 545–552.
25. Chen, Y., J. D. Morrow, and L. J. Roberts II. 1999. Formation of
reactive cyclopentenone compounds in vivo as products of the iso-
prostane pathway. J. Biol. Chem. 274: 10863–10868.
2
3
. Marnett, L. J., S. W. Rowlinson, D. C. Goodwin, A. S. Kalgutkar, and
C. A. Lanzo. 1999. Arachidonic acid oxygenation by COX-1 and
COX-2. Mechanisms of catalysis and inhibition. J. Biol. Chem. 274:
26. Brunoldi, E. M., G. Zanoni, G. Vidari, S. Sasi, M. L. Freeman, G.
L. Milne, and J. D. Morrow. 2007. Cyclopentenone prostaglandin,
1
2,14
15-deoxy-⌬
-PGJ is metabolized by Hep G2 cells via conjugation
2
2
2903–22906.
with glutathione. Chem. Res. Toxicol. 20: 1528–1535.
4
5
6
7
8
. Hamberg, M., and B. Samuelsson. 1966. Prostaglandins in human
27. Hubatsch, I., B. Mannervik, L. Gao, L. J. Roberts II, Y. Chen, and J.
D. Morrow. 2002. The cyclopentenone product of lipid peroxida-
tion, 15-A -isoprotane (8-isprostaglandin A ), is efficiently conju-
seminal plasma. Prostaglandins and related factors 46. J. Biol. Chem.
2
41: 257–263.
2
t
2
. Fitzpatrick, F. A., and M. A. Wynalda. 1983. Albumin-catalyzed me-
gated with glutathione by human and rat glutathione transferase
A4–4. Chem. Res. Toxicol. 15: 1113–1118.
tabolism of prostaglandin D . Identification of products formed in
2
vitro. J. Biol. Chem. 258: 11713–11718.
28. Milne, G. L., G. Zanoni, A. Porta, S. Sasi, G. Vidari, E. S. Musiek, M.
L. Freeman, and J. D. Morrow. 2004. The cyclopentenone product
of lipid peroxidation, 15-A -isoprostane, is efficiently metabolized
. Straus, D. S., and C. K. Glass. 2001. Cyclopentenone prostaglan-
dins: new Insights on biological activities and cellular targets. Med.
Res. Rev. 21: 185–210.
2
t
by HepG2 cells via conjugation with glutathione. Chem. Res. Toxicol.
17: 17–25.
29. Cox, B., L. J. Murphey, W. E. Zackert, R. Chinery, R. Graves-Deal, O.
Boutaud, J. A. Oates, R. J. Coffey, and J. D. Morrow. 2002. Human
colorectal cancer cells efficiently conjugate the cyclopentenone
12,14
. Kim, E. H., and Y. Surh. 2006. 15-deoxy-⌬
-Prostaglandin J as a
2
potential endogenous regulator of redox-sentitive transcriptor fac-
tors. Biochem. Pharmacol. 72: 1516–1528.
12,14
. Uchida, K., and T. Shibata. 2008. 15-deoxy-⌬
an electrophilic trigger of cellular responses. Chem. Res. Toxicol. 21:
38–144.
-prostaglandin J2:
prostaglandin, prostaglandin J , to glutathione. Biochim. Biophys.
2
1
Acta. 1584: 37–45.
Formation of deoxy-J -IsoPs in vivo
123
2