Dimerization of Wanzlick Carbenes
FULL PAPER
W. Wanzlick, H.-J. Kleiner, Angew. Chem. 1961, 73, 493; f) H.-
W. Wanzlick, Angew. Chem. 1962, 74, 128–134; g) H.-W.
Wanzlick, H.-J. Kleiner, Angew. Chem. Int. Ed. Engl. 1964, 3,
65; Angew. Chem. 1963, 75, 1204; h) H.-W. Wanzlick, B. Lach-
mann, Z. Naturforsch., Teil B 1969, 24, 574–576; i) B. Lach-
mann, H. Steinmaus, H.-W. Wanzlick, Tetrahedron 1971, 27,
4085–4090.
a) M. K. Denk, A. Thadani, K. Hatano, A. J. Lough, Angew.
Chem. Int. Ed. Engl. 1997, 36, 2607–2609; Angew. Chem. 1997,
109, 2719–2721; b) M. K. Denk, K. Hatano, M. J. Ma, Tetrahe-
dron Lett. 1999, 40, 2057–2060.
For computational studies of the dimerization, see: a) D. C.
Graham, K. J. Cavell, B. F. Yates, J. Phys. Org. Chem. 2005,
18, 298–309; b) D. C. Graham, B. F. Yates, Aust. J. Chem. 2004,
57, 359–364; c) J. Cheng, C.-L. Lai, C.-H. Hu, Mol. Phys. 2004,
102, 2617–2621; d) R. W. Alder, M. E. Blake, J. M. Oliva, J.
Phys. Chem. A 1999, 103, 11200–11211; e) R. W. Alder, M. E.
Blake, L. Chaker, J. N. Harvey, F. Paolini, J. Schutz, Angew.
Chem. Int. Ed. 2004, 43, 5896–5911; f) J. M. Oliva, Chem. Phys.
Lett. 1999, 302, 35–42.
a) D. Ülkü, M. N. Tahir, B. Çetinkaya, I. Özdemir, Acta Crys-
tallogr., Sect. C 1997, 53, 240–241; b) A. Schönberg, E. Singer,
W. Stephan, Chem. Ber. 1987, 120, 1581–1588; c) Schönberg,
E. Singer, W. Stephan, Chem. Ber. 1987, 120, 1589–1591; d)
Schönberg, E. Singer, W. Stephan, Chem. Ber. 1983, 116, 2068–
2073; for reviews on enetetramines see: e) E. Haug, W.
Kantlehner, in: Methoden Org. Chem., Houben-Weyl, 4th ed.
1952, vol. E15, 2898–2904, Thieme, Stuttgart, 1993; f) M. Re-
gitz, Methoden Org. Chem. (Houben-Weyl), 4th ed. 1952, vol.
E19b, Thieme, Stuttgart, 1989; g) M. F. Lappert, J. Organomet.
Chem. 1988, 358, 185–214; h) B. Çetinkaya, E. Çetinkaya, J. A.
Chamizo, P. B. Hitchcock, H. A. Jasim, H. Küçükbay, M. F.
Lappert, J. Chem. Soc. Perkin Trans. 1 1998, 2047–2054; i) B.
Çetinkaya, E. Çetinkaya, P. B. Hitchcock, M. F. Lappert, I.
Özdemir, J. Chem. Soc. Dalton Trans. 1997, 1359–1362; j) E.
Çetinkaya, P. B. Hitchcock, H. Küçükbay, M. F. Lappert, S.
Al-Juaid, J. Organomet. Chem. 1994, 481, 89–95; k) E. Çetin-
kaya, P. B. Hitchcock, H. A. Jasim, M. F. Lappert, K. Spyro-
poulos, J. Chem. Soc. Perkin Trans. 1 1992, 561–567; l) P. B.
Hitchcock, M. F. Lappert, P. L. Pye, J. Chem. Soc. Dalton
Trans. 1977, 2160–2172; m) M. F. Lappert, P. L. Pye, J. Chem.
Soc. Dalton Trans. 1977, 2172–2181; n) B. Çetinkaya, P.
Dixneuf, M. F. Lappert, J. Chem. Soc. Chem. Commun. 1973,
1827–1833; o) J. Hocker, R. Merten, Angew. Chem. 1972, 84,
1022; Angew. Chem. Int. Ed. Engl. 1972, 11, 964–973; p) N.
Wiberg, Angew. Chem. 1968, 80, 809–833; Angew. Chem. Int.
Ed. Engl. 1968, 7, 766–779; q) R. W. Hoffmann, Angew. Chem.
Int. Ed. Engl. 1967, 7, 754–765; Angew. Chem. 1968, 80, 823;
r) H. Quast, S. Hünig, Chem. Ber. 1966, 99, 2017–2038.
ppm. GC-MS: tr = 11.0 min, m/z (rel. int.%) = 186 (100), 171 (13),
157 (5), 129 (45), 115 (43), 56 (13), 42 (16).
1-tert-Butyl-3-isopropylimidazolidine-2-thione (3c): Colorless crys-
tals, m.p. 102.5–103.5 °C (hexane). Yield 2.84 g (41%) No CAS. 1H
NMR (CDCl3): δ = 1.14 [d, 3J(H,H) = 7 Hz, 6 H, CH(CH3)2], 1.61
[s, 9 H, C(CH3)3], 3.33 [m 2 H, NCH2], 3.56 [m, 2 H, NCH2], 4.98
[sept, 3J(H,H) = 6.8 Hz, 1 H, CH(CH3)2] ppm. 13C NMR (CDCl3):
δ = 20.0 [CH(CH3)2], 28.1 [C(CH3)3], 40.0 [tBuNCH2], 44.9
[iPrNCH2], 46.3 [CH(CH3)2], 56.4 [C(CH3)3], 181.8 [CS] ppm. GC-
MS: tr = 11.8 min, m/z (rel. int.%) = 200 (71), 185 (78), 157 (5),
143 (43), 129 (100), 111 (8), 102 (7), 84 (10), 70 (12).
[4]
[5]
1-tert-Butyl-3-methylimidazolidin-2-ylidene (4a): 8.7 g (83%). Col-
orless oil, b.p. 65 °C/0.1 Torr 1H NMR (C6D6): δ = 1.35 [s, 9 H,
C(CH3)3], 2.80 [m, 2 H, NCH2], 2.98 [m, 2 H, NCH2], 3.01 [s, 3 H,
CH3]. 13C (C6D6): δ = 30.0, [C(CH3)3], 37.9 [NCH3], 45.3
[tBuNCH2], 50.8 [CH3NCH2], 53.7 [C(CH3)3], 239.7 [N2C:] ppm.
1-tert-Butyl-3-ethylimidazolidin-2-ylidene (4b): 10.5 g (91%) Color-
less oil, b.p. 67 °C/0.1 Torr. 1H NMR (C6D6): δ = 1.07 [t, 3J = 7 Hz,
3 H, CH2-CH3], 1.35 [s, 9 H, C(CH3)3], 2.90 [m, 2 H, NCH2], 3.03
[6]
3
[m, 2 H, NCH2], 3.46 [q, J = 7 Hz, 2 H, CH2CH3]. 13C (C6D6): δ
= 14.8 [CH2CH3], 30.1 [C(CH3)3], 44.9 [tBuNCH2], 45.7 [EtNCH2],
48.1 [CH2CH3], 53.9 [C(CH3)3], 238.8 [N2C:] ppm.
1-tert-Butyl-3-isopropylimidazolidin-2-ylidene (4c): 11.7 g (93%).
Colorless oil, b.p. 70 °C/0.1 Torr. 1H NMR (C6D6): δ = 1.16, [d,
6.7 Hz, 6 H, CH(CH3)2], 1.36 [s, 9 H, C(CH3)3], 2.93 [m, 2 H,
NCH2], 2.99 [m, 2 H, NCH2], 4.00 [sept, 6.7 Hz, 1 H, CH(CH3)2].
13C (C6D6): δ = 22.1 [CH(CH3)2], 29.9 [C(CH3)3], 44.2 [tBuNCH2],
44.9 [iPrNCH2], 50.8 [CH(CH3)2], 53.8 [C(CH3)3], 237.6 [N2C:]
ppm.
Supporting Information (see also the footnote on the first page of
this article): A table listing the energies, point groups and lowest
frequencies of the calculated diamino carbenes 4 and enetetramines
5.
Acknowledgments
We thank the Natural Sciences and Engineering Research Council
of Canada (NSERC) for support of this work and Professor Gord
Lange for valuable comments.
[7]
a) M.-D. Su, S.-Y. Chu, Chem. Phys. Lett. 1999, 308, 283–288;
b) J. F. Lehmann, S. G. Urquhart, L. E. Ennis, A. P. Hitchcock,
K. Hatano, S. Gupta, M. K. Denk, Organometallics 1999, 18,
1862–1872; c) S. Urquhart, A. P. Hitchcock, M. K. Denk, Or-
ganometallics 1998, 17, 2352–2360; d) C. Boehme, G. Frenking,
J. Am. Chem. Soc. 1996, 118, 2039–2046; e) C. Heinemann, T.
Müller, Y. Apeloig, H. Schwartz, J. Am. Chem. Soc. 1996, 118,
2023–2038; f) R. R. Sauers, Tetrahedron Lett. 1996, 37, 149–
152; g) C. Heinemann, W. Thiel, Chem. Phys. Lett. 1994, 217,
11–16; h) J. Cioslowski, Int. J. Quantum Chem. 1993, 27, 309–
319.
a) T. A. Taton, P. Chen, Angew. Chem. 1996, 108, 1098–1100;
Angew. Chem. Int. Ed. Engl. 1996, 35, 1011–1013; b) Z. Shi, V.
Goulle, R. G. Thummel, Tetrahedron Lett. 1996, 37, 2357–
2360; c) G. V. Tormos, M. G. Bakker, P. Wang, M. V. Lakshmi-
kantham, M. P. Cava, R. M. Metzger, J. Am. Chem. Soc. 1995,
117, 8528–8535.
[1] For reviews on stable carbenes, see: a) R. Alder, M. E. Blake,
L. Chaker, J. N. Harvey, F. Paolini, J. Schutz, Angew. Chem.
Int. Ed. 2004, 43, 5896–5911; b) D. Bourissou, O. Guerret, F. P.
Gabbaï, G. Bertrand, Chem. Rev. 2000, 100, 39–91; c) G. Ber-
trand, C. Buron, H. Gornitzka, V. Romanenko, G. Bertrand,
Science 2000, 288, 834–836; d) A. J. Arduengo, Acc. Chem. Res.
1999, 32, 913–921; e) A. J. Arduengo, R. Krafczyk, Chem. Un-
serer Zeit 1998, 32, 6–14; f) W. A. Herrmann, C. Köcher, An-
gew. Chem. Int. Ed. Engl. 1997, 36, 2163–2187; g) M. Regitz,
Angew. Chem. Int. Ed. Engl. 1996, 35, 725–728; Angew. Chem.
1996, 108, 791–794; h) W. Sander, Angew. Chem. Int. Ed. Engl.
1990, 29, 344–354.
[8]
[9]
[2] A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc.
1991, 113, 361–362.
[3] a) H.-W. Wanzlick, F. Esser, H.-J. Kleiner, Chem. Ber. 1963,
96, 1208–1212; b) H.-W. Wanzlick, B. Lachmann, E. Schikora,
Chem. Ber. 1965, 98, 3170–3177; c) H.-W. Wanzlick, H.-J.
Kleiner, I. Lasch, H. U. Füldner, Angew. Chem. Int. Ed. Engl.
1966, 5, 126–127; Angew. Chem. 1966, 78, 115–116; H.-W.
Wanzlick, E. Schikora, Angew. Chem. 1960, 72, 494; d) H.-W.
Wanzlick, E. Schikora, Chem. Ber. 1961, 94, 2389–2393; e) H.-
a) R. W. Alder, P. R. Allen, M. Murray, A. G. Orpen, Angew.
Chem. 1996, 108, 1211–1213; Angew. Chem. Int. Ed. Engl. 1996,
35, 1121–1122; b) R. W. Alder, M. E. Blake, Chem. Commun.
1997, 1513–1514; c) R. W. Alder, M. E. Blake, C. Bortolotti, S.
Eur. J. Inorg. Chem. 2007, 3527–3534
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
3533