Page 5 of 5
Please Gd roe en no tC ha ed mj u iss tt r my argins
Journal Name
ARTICLE
Preparation of MOH-Zn.
For preparation of MOH-Zn, typically, chitosan (1 g) and
Viswanatha, S. S. Agasti and T. K. Maji,DAOnI:g1e0w.10. 3C9h/Dem0G.CIn0t0.2E12dG.,
2
019, 58, 5008-5012; (d) Q. Zhao, Z. Tu, S. Wei, K. Zhang, S.
Choudhury, X. Liu and L. A. Archer, Angew. Chem. Int. Ed., 2018,
7, 992-996; (e) A. H. Chughtai, N. Ahmad, H. A. Younus, A.
phytic acid (2 g, 45 wt% in water) were mixed up and stirred for
o
2
h in a flask at 60 C. Then, ZnCl
2
(8 g), was added into the
5
o
system and stirred at 60 C for 10 h. Subsequently, the mixture
was cooled down to room temperature, and hydrogel was
obtained. After that, ethanol (50 mL) was added to the
hydrogel, and massive white powder immediately appeared.
The white powder was separated from the system through
Laypkov and F. Verpoort, Chem. Soc. Rev., 2015, 44, 6804-6849.
. J. Wei, G. Wang, F. Chen, M. Bai, Y. Liang, H. Wang, D. Zhao and
Y. Zhao, Angew. Chem. Int. Ed. , 2018, 57, 9838-9843.
3
4
. (a) C. Chen, X. Li, J. Deng, Z. Wang and Y. Wang, Chemsuschem,
2
018, 11, 2540-2546; (b) K. Kümmerer, Angew. Chem. Int. Ed. ,
filtration, and was washed by ethanol sufficiently until there
2017, 56, 16420-16421.
-
was no Cl detected in the supernatant. Finally, the white 5. (a) A. K. Qaroush, K. I. Assaf, S. K. Bardaweel, A. a. Al-Khateeb, F.
powder was dried by freeze drying for use, denoted as MOH-Zn.
Cycloaddition of epoxide with CO over MOH-Zn
Typically, certain amounts of MOH-Zn, epoxide and TBAB
were loaded into a flask (10 mL) that was equipped with a
Alsoubani, E. Al-Ramahi, M. Masri, T. Brück, C. Troll, B. Rieger and
A. a. F. Eftaiha, Green Chem., 2017, 19, 4305-4314; (b) P.
Mohammadzadeh Pakdel and S. J. Peighambardoust, Carbohyd.
Polym., 2018, 201, 264-279; (c) C. Khoury and O. M. Gazit,
ChemNanoMat, 2018, 4, 353-360; (d) B. Sahoo, A. E. Surkus, M.
M. Pohl, J. Radnik, M. Schneider, S. Bachmann, M. Scalone, K.
Junge and M. Beller, Angew. Chem. Int. Ed. , 2017, 56, 11242-
2
magnetic stirrer bar. The air in the flask was replaced with CO
and a CO balloon was then connected to the flask. The reaction
2
2
system was heated at 30 C and stirred for 24 h. For the
1
1247.
. (a) L. Li, G. Zhang and Z. Su, Angew. Chem. Int. Ed., 2016, 55,
093-9096; (b) S. Xiong, S. Xu, A. Phommachanh, M. Yi and Y.
o
reactions at high temperature and pressure (100 C, 3 MPa),
6
MOH-Zn, epoxide and TBAB were loaded into a stainless steel
autoclave with a Telflon tube (25 mL inner volume), and the
9
Wang, Environ. Sci. Technol., 2019, 53, 3331-3341; (c) H. B.
Aiyappa, S. Saha, P. Wadge, R. Banerjee and S. Kurungot, Chem.
Sci., 2015, 6, 603-607.
reactor was purged with CO
2 2
to remove the air inside. Then, CO
was charged into the reactor up to 3 MPa, and the mixture was
o
7. J. Song, B. Zhou, H. Zhou, L. Wu, Q. Meng, Z. Liu and B. Han,
stirred at 100 C for a certain time. After reaction, the reactor
Angew. Chem. Int. Ed., 2015, 54, 9399-9403.
was cooled in an ice-water bath, and excess of CO
2
was vented.
8
9
. D. Wang, F. Xu, J. Hu and M. Lin, Mater. Sci. Eng. C 2017, 71, 1086-
089.
1
The product yield was determined by H NMR (DMSO-d6, 400
MHz) using1,1,2,2-tetrachloroethane as an internal standard.
To test the recyclability of MOH-Zn, the catalyst was recovered
by filtration, washed with ethanol for 4 times, and then dried
1
. (a) F. Li, Y. Bu, G. F. Han, H. J. Noh, S. J. Kim, I. Ahmad, Y. Lu, P.
Zhang, H. Y. Jeong, Z. Fu, Q. Zhong and J. B. Baek, Nat. Commun.,
2
019, 10, 2623; (b) S. Fulignati, C. Antonetti, D. Licursi, M.
o
under vacuum at 60 C for 10 h, which was reused with fresh
Pieraccioni, E. Wilbers, H. J. Heeres and A. M. R. Galletti, Appl.
Catal. A, 2019, 578, 122-133; (c) Q. Yang, C. C. Yang, C. H. Lin and
H. L. Jiang, Angew. Chem. Int. Ed., 2019, 58, 3511-3515.
TBAB in each consecutive run.
1
1
0. Z. Yang, S. Wang, Z. Zhang, W. Guo, K. Jie, M. I. Hashim, O. Š.
Miljanić, D.-e. Jiang, I. Popovs and S. Dai, J. Mater Chem. A, 2019,
Conflicts of interest
There are no conflicts to declare.
7
, 17277-17282.
1. (a) Q. Liu, L. Wu, R. Jackstell and M. Beller, Nat. Commun., 2015,
, 5933; (b) A. Kaithal, M. Holscher and W. Leitner, Angew. Chem.
6
Int. Ed. , 2018, 57, 13449-13453; (c) C. K. Ng, R. W. Toh, T. T. Lin,
H.-K. Luo, T. S. A. Hor and J. Wu, Chem. Sci., 2019, 10, 1549-1554;
Acknowledgements
(
d) X. Yu, J. Sun, J. Yuan, W. Zhang, C. Pan, Y. Liu and G. Yu, Chem.
This work was financially supported by National Key Research
and Development Program of China (2018YFB0605801),
National Natural Science Foundation of China (21673256),
Eng. J., 2018, 350, 867-871.
1
2. (a) J. Sun, W. Cheng, Z. Yang, J. Wang, T. Xu, J. Xin and S. Zhang,
Green Chem., 2014, 16, 3071-3078; (b) J. Sun, J. Wang, W. Cheng,
J. Zhang, X. Li, S. Zhang and Y. She, Green Chem., 2012, 14, 654-
Beijing Municipal Science
(
(
&
Technology Commission
Z191100007219009), and Chinese Academy of Sciences
QYZDY-SSW-SLH013).
6
60.
1
1
3. G. Ji, Z. Yang, H. Zhang, Y. Zhao, B. Yu, Z. Ma and Z. Liu, Angew.
Chem. Int. Ed., 2016, 55, 9685-9689.
4. L. F. Xiao, F. W. Li and C. G. Xia, Appl. Catal. A-General, 2005, 279,
Notes and references
1
25-129.
. (a) X. Li, X. Yang, Y. Huang, T. Zhang and B. Liu, Adv. Mater., 2019, 15. J. Tharun, D. W. Kim, R. Roshan, Y. Hwang and D.-W. Park, Catal.
902031; (b) T. Himiyama, M. Waki, Y. Maegawa and S. Inagaki,
Commun., 2013, 31, 62-65.
1
2
1
Angew. Chem. Int. Ed., 2019, 58, 9150-9154; (c) Y. Ding, X. Huang,
X. Yi, Y. Qiao, X. Sun, A. Zheng and D. S. Su, Angew. Chem. Int. Ed.,
2
Dai, H. Wang and F. Shi, Nat. Commun., 2018, 9, 1465; (e) H. Yang,
X. Cui, X. Dai, Y. Deng and F. Shi, Nat. Commun., 2015, 6, 6478.
. (a) J. M. Moreno, A. Velty, U. Diaz and A. Corma, Chem. Sci., 2019,
018, 57, 13800-13804; (d) Y. Zhang, S. Pang, Z. Wei, H. Jiao, X.
1
0, 2053-2066; (b) X. Qiu, J. Chen, X. Zou, R. Fang, L. Chen, Z.
Chen, K. Shen and Y. Li, Chem. Sci., 2018, 9, 8962-8968; (c) D.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins