Communication
ChemComm
5 C. Letondor, N. Humbert and T. R. Ward, Proc. Natl. Acad. Sci.
U. S. A., 2005, 102, 4683–4687.
6 T. R. Ward, Acc. Chem. Res., 2011, 44, 47–57.
(iv) The protective layer also prevents the protein denatura-
tion in the presence of chaotropic agents.
In summary, we have successfully developed an artificial
biocatalyst consisting of a pianostool iridium cofactor within
Sav immobilized in SNPs. These nanoparticles display remark-
able catalytic activity with TON 4 46 000 using aqueous solutions
and TON 4 4000 in the presence of cellular debris. Presented
SNPs offer interesting perspectives towards green chemistry as
they operate under nearly physiological conditions and can be
recycled with only a slight erosion of reactivity. Immobilization
and protection of artificial metalloenzymes on silica nano-
particles represents a promising technique for activity enhance-
ment of such hybrid catalysts. The next steps will include
cellular uptake and engineering enzyme cascades incorporating
natural and artificial metalloenzymes within SNPs.
7 Y. M. Wilson, M. Du¨rrenberger, E. S. Nogueira and T. R. Ward,
J. Am. Chem. Soc., 2014, 136, 8928–8932.
8 M. E. Wilson and G. M. Whitesides, J. Am. Chem. Soc., 1978, 100, 306–307.
9 J. C. Lewis and P. R. Chen, ACS Catal., 2013, 3, 2954–2975.
10 F. Rosati and G. Roelfes, ChemCatChem, 2010, 2, 916–927.
11 P. J. Deuss, R. Denheeten, W. Laan and P. C. J. Kamer, Chem. – Eur.
J., 2011, 17, 4680–4698.
12 F. Yu, V. M. Cangelosi, M. L. Zastrow, M. Tegoni, J. S. Plegaria, a. G. Tebo,
C. S. Mocny, L. Ruckthong, H. Qayyum and V. L. Pecoraro, Chem. Rev.,
2014, 114, 3495–3578.
13 T. K. Hyster and T. R. Ward, Angew. Chem., Int. Ed., 2016, 2–16.
14 T. Ueno, S. Abe, N. Yokoi and Y. Watanabe, Coord. Chem. Rev., 2007,
251, 2717–2731.
15 P. K. Sasmal, C. N. Streu and E. Meggers, Chem. Commun., 2013, 49,
1581–1587.
16 M. Du¨rrenberger, T. Heinisch, Y. M. Wilson, T. Rossel, E. Nogueira,
¨
L. Knorr, A. Mutschler, K. Kersten, M. J. Zimbron, J. Pierron, T. Schirmer
and T. R. Ward, Angew. Chem., Int. Ed., 2011, 50, 3026–3029.
17 A. Cumbo, B. Lorber, P. F.-X. Corvini, W. Meier and P. Shahgaldian,
Nat. Commun., 2013, 4, 1503–1507.
18 S. Sykora, A. Cumbo, G. Belliot, P. Pothier, C. Arnal, Y. Dudal, P. F.-X.
Corvini and P. Shahgaldian, Chem. Commun., 2015, 51, 2256–2258.
19 P. Shahgaldian, R. Correro-Shahgaldian, A. Cumbo and P. F.-X. Corvini,
WO/2015/014888, 2015.
20 M. R. Correro, N. Moridi, H. Schu¨tzinger, S. Sykora, E. M. Amman,
E. H. Peters, Y. Dudal, P. F.-X. Corvini and P. Shahgaldian, Angew.
Chem., Int. Ed., 2016, 55, 6285–6289.
This research was supported by the Swiss Nanoscience
Institute (Project NanoZyme, DPA2238) and the NCCR Molecu-
lar Systems Engineering.
Notes and references
¨
1 H. Krassig, J. Schurz, R. G. Steadman, K. Schliefer, W. Albrecht,
M. Mohring and H. Schlosser, Ullmann’s encyclopedia of industrial
chemistry, 2012, vol. 6, pp. 565–582.
¨
¨
21 F. Schwizer, V. Kohler, M. Du¨rrenberger, L. Knorr and T. R. Ward,
`
¨
2 O. Pamies and J. E. Backvall, Chem. Rev., 2003, 103, 3247–3261.
ACS Catal., 2013, 3, 1752–1755.
¨
3 K. M. Polizzi, A. S. Bommarius, J. M. Broering and J. F. Chaparro-Riggers, 22 W. Stober, A. Fink and E. Bohn, J. Colloid Interface Sci., 1968, 26,
Curr. Opin. Chem. Biol., 2007, 11, 220–225. 62–69.
4 M. D. Truppo, H. Strotman and G. Hughes, ChemCatChem, 2012, 4, 23 S. Betanzos-Lara, Z. Liu, A. Habtemariam, A. M. Pizarro, B. Qamar
1071–1074.
and P. J. Sadler, Angew. Chem., Int. Ed., 2012, 51, 3897–3900.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2016