ChemComm
Communication
key active six-membered ruthenacycle species (A) via reversible
ortho-CAr–H bond metalation. Next, aided by the CAr–Ru s-bond
ortho/para-directing effect, an alkyl radical, formed from alkyl
bromide via a ruthenium-mediated SET process, attacks species
A at the meta-position to the pyridyl group, providing an active
species B. The deprotonation of species B assisted by ruthenium(III)
and K CO generates a stable species C. Finally, the species C
2 3
exchanged a ligand with the aryl 2-pyridyl ketone to provide the
final product and recycle the active catalyst species.
In conclusion, we have achieved the first meta-CAr–H func-
tionalization of aryl 2-pyridyl ketones using alkyl bromides in
the presence of a ruthenium complex catalyst. Mechanistic
studies suggested that this meta-C –H bond functionalization
Ar
might involve a ruthenium-mediated SET. This method pro-
vides an efficient approach to the modification and functiona-
lization at the meta-position of aryl 2-pyridyl ketones.
We gratefully acknowledge the Program of Science and Tech-
nology Innovation Talents of Henan Province (19HASTIT035) for
providing financial support for this work.
Scheme 4 Preliminary mechanistic studies.
Conflicts of interest
process and that the Ru-catalyzed meta-CAr–H functionalization There are no conflicts to declare.
was water-tolerant (Scheme 4b). Furthermore, when radical inhi-
bitors, such as TEMPO and BQ, were separately added to the Notes and references
model reaction, the desired product was not obtained, indicating
1
(a) B. Xiao, T. J. Gong, J. Xu, Z. J. Liu and L. Liu, J. Am. Chem. Soc.,
that Ru-catalyzed meta-C –H alkylation involved a radical mecha-
2011, 133, 1466; (b) T. Y. Liu, H. L. Cui, Y. Zhang, K. Jiang, W. Du,
Z. Q. He and Y. C. Chen, Org. Lett., 2007, 9, 3671; (c) Y. Pui and
C. F. Y. Kwong, Org. Lett., 2013, 15, 270; (d) J. Zhao, C. O. Hughes
and F. D. Toste, J. Am. Chem. Soc., 2006, 128, 7436.
Ar
nism via a single electron transfer (SET) process (Scheme 4c). Finally,
to investigate the impact of electronic nature on the alkylation, a
competitive reaction of (4-methoxyphenyl)(pyridin-2-yl)methanone,
bearing an electron-donating group, and pyridin-2-yl(4-(trifluoro-
methyl)phenyl)methanone, bearing an electron-withdrawing group,
with methyl 2-bromopropanoate provided mainly product 3g under
the optimized conditions (Scheme 4d). This result showed that this
Ru-catalyzed alkylation was an electrophilic process.
2 L. G. Wade, Jr, Organic Chemistry, Pearson International Edition,
th edn, 2010, p. 773.
(a) B. Li, C. Darcel and P. H. Dixneuf, ChemCatChem, 2014, 6, 127;
b) X. D. Zhao and Z. K. Yu, J. Am. Chem. Soc., 2008, 130(26), 8136;
7
3
(
(c) G. R. Meng and M. Szostak, Org. Lett., 2016, 18, 796; (d) W. W. Jin,
Z. K. Yu, W. He, W. J. Ye and W. J. Xiao, Org. Lett., 2009, 11, 1317.
J. B. Xu, C. J. Chen, H. Q. Zhao, C. H. Xu, Y. X. Pan, X. Xu, H. R. Li,
L. J. Xu and B. M. Fan, Org. Chem. Front., 2018, 5, 734.
4
Based on the above experimental results and previous reports
5 Y. F. Liang, X. Y. Li, X. Y. Wang, Y. P. Yan, P. Feng and N. Jiao, ACS
Catal., 2015, 5, 1956.
6
1
0
related to Ru-catalyzed meta-CAr–H bond functionalization,
a
(a) P. Patel and S. Chang, Org. Lett., 2014, 16, 3328; (b) Y. Hwang,
Y. Park and S. Chang, Chem. – Eur. J., 2017, 23, 11147.
plausible mechanism was proposed, as shown in Scheme 5. The
aryl 2-pyridyl ketones react with [Ru(p-cymene)Cl
]
2 2
to provide a
7 S. Kollea and S. Batra, Org. Biomol. Chem., 2015, 13, 10376.
8
(a) X. F. Jia, S. H. Zhang, W. H. Wang, F. Luo and J. Cheng, Org. Lett.,
009, 11, 3120; (b) S. Kollea and S. Batra, RSC Adv., 2016, 6, 50658.
(a) P. L. Arnold, M. S. Sanford and S. M. Pearson, J. Am. Chem. Soc.,
009, 131, 13912; (b) D. Kalyani, A. R. Dick, W. Q. Anani and
2
9
2
M. S. Sanford, Org. Lett., 2006, 8, 2523; (c) K. L. Hull, W. Q. Anani
and M. S. Sanford, J. Am. Chem. Soc., 2006, 128, 7134.
0 For representative examples, see: (a) H. L. Barlow, C. J. Teskey and
M. F. Greaney, Org. Lett., 2017, 19, 6662; (b) G. B. Li, D. Z. Li,
J. Y. Zhang, D. Q. Shi and Y. S. Zhao, ACS Catal., 2017, 7, 4138;
1
(
(
c) K. Jing, Z. Y. Li and G. W. Wang, ACS Catal., 2018, 8, 11875;
d) O. Saidi, J. Marafie, A. E. Ledger, P. M. Liu, M. F. Mahon,
G. Kociok-Kohn, M. K. Whittlesey and C. G. Frost, J. Am. Chem.
Soc., 2011, 133, 19298; (e) J. Li, S. Warratz, D. Zell, S. S. De, E. E.
Ishikawa and L. Ackermann, J. Am. Chem. Soc., 2015, 137, 13894;
(
f ) C. J. Teskey, A. Y. W. Lui and M. F. Greaney, Angew. Chem.,
Int. Ed., 2015, 54, 11677; (g) Q. Yu, L. Hu, Y. Wang, S. Zheng and
J. Huang, Angew. Chem., Int. Ed., 2015, 54, 15284; (h) Z. L. Fan,
J. B. Ni and A. Zhang, J. Am. Chem. Soc., 2016, 138, 8470; (i) P. Marc ´e ,
A. J. Paterson, M. F. Mahon and C. G. Frost, Catal. Sci. Technol.,
2016, 6, 7068; ( j) P. Gandeepan, J. Koeller, K. Korvorapun, J. Mohr
and L. Ackermann, Angew. Chem., Int. Ed., 2019, 58, 9820; (k) G. Li,
P. P. Gao, X. L. Lv, C. Qu, Q. K. Yan, Y. Wang, S. L. Yang and
Scheme 5 Proposed catalytic cycle.
This journal is ©The Royal Society of Chemistry 2020
Chem. Commun., 2020, 56, 293--296 | 295