Communication
Dalton Transactions
K, space group P212121, Z = 4 (monomers), μ(CuKα) = 2.5 mm−1, 18 651 reflec-
tions measured, 3697 independent reflections (Rint = 0.108). The final R1 values
were 0.0498 (I > 2σ(I)) and 0.0572 (all data). The final wR(F2) values were 0.1245
(I > 2σ(I)) and 0.1304 (all data). The goodness of fit on F2 was 1.02.
charged C1-, C3-, and C5-positions are shorter than those to
the uncharged C2- and C4-positions.44 For the complexes 1–3
the M–C distances vary significantly and the shortest is found
to be the central carbon atom of the Pdl′ ligand (C3-position)
consistent with the observation on [(η5-2,4-Me2C5H5)3Nd].
However, the average Ca–C1/5 distances (2.722(54) Å) in 1 are
essentially identical to the average Ca–C3 distances (2.728(28)
Å), a different trend is observed for the heavier homologues 2
and 3, for which the average M–C2/4 and M–C1/5 bonds
become progressively longer (Table 1). The increase in the
average M–C distances of 2.738(40) Å in 1 to 3.100(68) Å in 3
nicely mirrors the increase in ionic radii for heptacoordinate
Ca2+ (1.06 Å) and Sr2+ (1.21 Å) and octacoordinate Ba2+
(1.40 Å).45 These observations can be compared to those in
metal–allyl complexes, for which average M–C distances in
[(η3-1,3-(Me3Si)2C3H3)2Ca(thf)2] (2.654(4) Å),17 [(η3-C3H5)2(tri-
gylme-κ4)] (2.727(72) Å),46 and [(η3-1,3-(Me3Si)2C3H3)2Sr(thf)2]
(2.801 Å)21 are found. All attempts to prepare a momomeric
allyl Ba analogue resulted in the formation of a heterometallic
barium/potassium complex, [K(thf)Ba2(1,3-(Me3Si)2C3H3)5].21
This further supports the important features of the penta-
dienyl fragment in the stabilization of the heavy-alkaline earth
metals by adopting an intermediate position between the allyl
and cyclopentadienyl fragments. Furthermore, the average
M–C (M = Ca, Sr, Ba) bond distances in 1–3 are longer than
those in the related metallocenes, e.g. [(η5-1,3-(Me3Si)2C5H3)2-
M(thf)] (M = Ca (2.678(14) Å),47 Sr (2.82 Å)48) and [(η5-1,2,4-
(Me3C)3C5H2)2Sr(thf)] (2.87 Å).35 This presumably indicates a
more flexible and therefore weaker metal–ligand bonding in
the pentadienyl systems, and therefore a hapticity switch
should be relatively facile in the open group 2 metallocenes.
Crystal data for 1: C30H54OCa, M = 470.81, monoclinic, a = 9.9014(2) Å, b =
21.7075(4) Å, c = 14.4003(3) Å, β = 105.501(2)°, V = 2982.56(10) Å3, T = 100(2) K,
space group P21/n, Z = 4, μ(MoKα) = 1.9 mm−1, 78 853 reflections measured,
6171 independent reflections (Rint = 0.048). The final R1 values were 0.0296 (I >
2σ(I)) and 0.0306 (all data). The final wR(F2) values were 0.0785 (I > 2σ(I)) and
0.0794 (all data). The goodness of fit on F2 was 1.05.
Crystal data for 2: C30H54OSr, M = 518.35, triclinic, a = 9.7948(5) Å, b =
14.1834(5) Å, c = 23.3962(10) Å, α = 88.549(3)°, β = 79.821(2)°, γ = 71.131(2)°, V =
3
3025.4(2) Å , T = 100(2) K, space group P(1), Z = 4, μ(MoKα) = 1.8 mm−1, 132 306
ˉ
reflections measured, 15 422 independent reflections (Rint = 0.111). The final R1
values were 0.0544 (I > 2σ(I)) and 0.1022 (all data). The final wR(F2) values were
0.0724 (I > 2σ(I)) and 0.0825 (all data). The goodness of fit on F2 was 1.04.
Crystal data for 3: C34H62BaO2, M = 640.18, triclinic, a = 9.5411(3) Å, b =
12.0829(3) Å, c = 15.6171(5) Å, α = 96.320(2)°, β = 97.530(3)°, γ = 98.661(3)°, V =
3
1748.97(9) Å , T = 100(2) K, space group P(1), Z = 2, μ(MoKα) = 1.2 mm−1, 92 321
ˉ
reflections measured, 10 431 independent reflections (Rint = 0.031). The final R1
values were 0.0222 (I > 2σ(I)) and 0.0262 (all data). The final wR(F2) values were
0.0493 (I > 2σ(I)) and 0.0514 (all data). The goodness of fit on F2 was 1.05.
1 M. Westerhausen, Z. Anorg. Allg. Chem., 2009, 635, 13.
2 S. Krieck, L. Yu, M. Reiher and M. Westerhausen,
Eur. J. Inorg. Chem., 2010, 197.
3 M. Westerhausen, J. Langer, S. Krieck, R. Fischer, H. Goerls
and M. Koehler, Top. Organomet. Chem., 2013, 45, 29.
4 W. A. Wojtczak, P. F. Fleig and M. J. Hampden-Smith, Adv.
Organomet. Chem., 1996, 40, 215.
5 T. Hatanpää, M. Vehkamaeki, I. Mutikainen, J. Kansikas,
M. Ritala and M. Leskelae, Dalton Trans., 2004, 1181.
6 M. Labet and W. Thielemans, Chem. Soc. Rev., 2009, 38,
3484.
7 C. A. Wheaton, P. G. Hayes and B. J. Ireland, Dalton Trans.,
2009, 4832.
8 S. Harder, Chem. Rev., 2010, 110, 3852.
Conclusions
9 A. G. M. Barrett, M. R. Crimmin, M. S. Hill and
P. A. Procopiou, Proc. R. Soc. London, Ser. A, 2010, 466, 927.
10 T. P. Hanusa, Chem. Rev., 1993, 93, 1023.
11 D. J. Burkey and T. P. Hanusa, Comments Inorg. Chem.,
1995, 17, 41.
We have extended the series of group 2 open-metallocenes to Sr
and Ba and established a reliable synthetic protocol that allows
the preparation of synthetically useful quantities. In all cases
the Pdl′ ligand adopts a η5-U coordination mode in the solid
state and in solution. It can be expected that the other group 2
open-metallocenes are also accessible and that they exhibit
broad reactivity towards unsaturated molecules. These and
related studies are ongoing and will be reported in due course.
12 H. Sitzmann, T. Dezember and M. Ruck, Angew. Chem., Int.
Ed., 1998, 37, 3114.
13 P. Jutzi and N. Burford, Chem. Rev., 1999, 99, 969.
14 M. J. Harvey, K. T. Quisenberry, T. P. Hanusa and
V. G. Young Jr., Eur. J. Inorg. Chem., 2003, 3383.
15 M. D. Walter, G. Wolmershäuser and H. Sitzmann, J. Am.
Chem. Soc., 2005, 127, 17494.
16 L. Orzechowski, D. F. J. Piesik, C. Ruspic and S. Harder,
Dalton Trans., 2008, 4742.
17 M. J. Harvey, T. P. Hanusa and V. G. Young Jr., Angew.
Chem., Int. Ed., 1999, 38, 217.
18 K. T. Quisenberry, C. K. Gren, R. E. White, T. P. Hanusa
and W. W. Brennessel, Organometallics, 2007, 26, 4354.
19 S. C. Chmely, C. N. Carlson, T. P. Hanusa and
A. L. Rheingold, J. Am. Chem. Soc., 2009, 131, 6344.
20 S. C. Chmely, T. P. Hanusa and W. W. Brennessel, Angew.
Chem., Int. Ed., 2010, 49, 5870.
Acknowledgements
MDW acknowledges the financial support from the TU
Braunschweig through the “Zukunftsfonds” and from the
Deutsche Forschungsgemeinschaft (DFG) through the Emmy
Noether program (WA 2513/2).
Notes and references
‡Crystal data for [(thf)K(μ–η5:η5-Pdl′)]∞: C17H31KO, M = 290.52, orthorhombic,
a = 10.1190(2) Å, b = 10.7148(6) Å, c = 16.4367(9) Å, V = 1782.11(14) Å3, T = 130(2)
6616 | Dalton Trans., 2014, 43, 6614–6617
This journal is © The Royal Society of Chemistry 2014