S. Bhunia et al. / Inorganica Chimica Acta 363 (2010) 3993–3999
3999
Table 5
Performance of the Pd(II)–MCM-41 catalyst in solid-phase poisoning test.
Aryl halide
Phenylboronic acid
Coupling Reaction
T (°C)
SH–SiO2 added
Conversionb (yield) (wt%)
60
No
Yes
100 (99)
99 (98)
I
B(OH)2
Suzukia
60
No
Yes
97 (92)
96 (91)
OMe
Br
B(OH)2
a
Reactions were carried out in air using 3 mmol of aryl halide, 3.3 mmol of phenylboronic acid, 3 mmol of Na2CO3, 0.12 mmol of SH-SiO2, and 0.01 g of Pd(II)–MCM-41(Pd
content: 2.82 Â 10À3 mol%) in 20% H2O/EtOH at 60 °C temperature.
b
Conversion of reactant is determined by GC.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
References
[1] N. Miyaura, A. Suzuki, Chem. Rev. 95 (1995) 2457.
[2] J.H. Clark, D.J. Macquarrie, S.J. Tavernier, Dalton Trans. (2006) 4297.
[3] K.C. Nicolaou, C.N.C. Boddy, S. Brase, N. Winssinger, Angew. Chem., Int. Ed. 38
(1999) 2096.
[4] O. Baudoin, M. Cesario, D. Guenard, F. Gueritte, J. Org. Chem. 67 (2002) 1199.
[5] L. Pu, Chem. Rev. 98 (1998) 2405.
[6] J.P. Wolfe, R.A. Singer, B.H. Yang, S.L. Buchwald, J. Am. Chem. Soc. 122 (2000)
4020.
[7] J.P. Wolfe, S.L. Buchwald, Angew. Chem., Int. Ed. 38 (1999) 2413.
[8] G.A. Grasa, A.C. Hillier, S.P. Nolan, Org. Lett. 3 (2001) 1077.
[9] L. Yin, J. Liebscher, Chem. Rev. 107 (2007) 133.
[10] N.E. Leadbeater, M. Marco, Chem. Rev. 102 (2002) 3217.
[11] J.A. Loch, R.H. Crabtree, Pure Appl. Chem. 73 (2001) 119.
[12] For review M. Heitbaum, F. Glorius, I. Escher, Angew. Chem., Int. Ed. 45 (2006)
4732.
[13] J.S. Beck, C.T.-W. Chu, I.D. Johnson, C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C.
Vartuli, US Patent, 5, 1992, 108 725.
[14] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowizc, C.T. Kresge, K.D. Schmitt, C.T.-
W. Chu, D.H. Olson, E.W. Shepard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J.
Am. Chem. Soc. 114 (1992) 10834.
[15] F.Y. Tsai, C.L. Wu, C.Y. Mou, M.C. Chao, H.P. Lin, S.T. Liu, Tetrahedron Lett. 45
(2004) 7503.
Fig. 5. Kinetic profiles for the Suzuki coupling reaction of iodobenzene with
phenylboronic acid in the absence of solid poison (j) and in the presence of SH–
SiO2 as solid poison (d).
[16] C. González-Arellano, A. Corma, M. Iglesias, F. Sánchez, Adv. Synth. Catal. 346
(2004) 1758.
[17] A. Molnar, A. Papp, K. Miklos, P. Forgo, Chem. Commun. (2003) 2626.
[18] S. Mandal, D. Roy, R.V. Chaudhari, M. Sastry, Chem. Mater. 16 (2004)
3714.
[19] R.B. Bedford, U.G. Singh, R.I. Walton, R.T. Williams, S.A. Davis, Chem. Mater. 17
(2005) 701.
[20] S. Jana, B. Dutta, R. Bera, S. Koner, Inorg. Chem. 47 (2008) 5512.
[21] S. Jana, S. Haldar, S. Koner, Tetrahedron Lett. 50 (2009) 4820.
[22] B. Nohair, S. MacQuarrie, C.M. Crudden, S. Kaliaguine, J. Phys. Chem. C 112
(2008) 6065.
[23] J. Wiedermann, K. Mereiter, K. Kirchner, J. Mol. Catal. A: Chem. 257 (2006) 67.
[24] W.-H. Zhang, J.-L. Shi, L.-Z. Wang, D.-S. Yan, Chem. Mater. 12 (2000) 1408.
[25] S. Koner, Chem. Commun. (1998) 593.
[26] S. Jana, B. Dutta, R. Bera, S. Koner, Langmuir 23 (2007) 2492.
[27] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359 (1992)
710.
[28] S.L. Burkett, S.D. Sims, S. Mann, Chem. Commun. (1996) 1367.
[29] C.E. Fowler, S.L. Burkett, S. Mann, Chem. Commun. (1997) 1769.
[30] M.H. Lim, A. Stein, Chem. Mater. 11 (1999) 3285.
[31] Y. Fan, W. You, W. Huang, J.-L. Liu, Y.-N. Wang, Polyhedron 29 (2010)
1149.
[32] J. Zhou, X. Guo, C. Tu, X. Li, H. Sun, J. Organomet. Chem. 694 (2009) 697.
[33] M. Nonnenmacher, D. Kunz, F. Rominger, T. Oeser, J. Organomet. Chem. 692
(2007) 2554.
From the above results it may be concluded that there were no
leaching of Pd species occurring in the Pd(II)–MCM-41 catalyzed
Suzuki cross-coupling reaction.
4. Conclusion
In conclusion, we have succeeded to design a new heteroge-
neous catalyst for carbon–carbon coupling reaction by anchoring
Pd(II) Schiff-base moiety into mesoporous silica, MCM-41. The cat-
alyst shows high activity towards Suzuki cross-coupling reaction in
environmentally friendly solvent (20% H2O/EtOH) under mild reac-
tion conditions. The catalytic system tolerates a broad range of
functional groups. Notably, Pd(II)–MCM-41 is able to activate less
reactive chlorobenzene as well as para-chloroacetophenone with-
out any additives. Possibility of easy recycle and mild reaction con-
dition make the catalyst cheap and highly desirable to address the
environmental concerns.
[34] H. Yang, X. Han, Z. Ma, R. Wang, J. Liu, X. Ji, Green Chem. 12 (2010) 441.
[35] R. Dey, B. Sreedhar, B.C. Ranu, Tetrahedron 66 (2010) 2301.
[36] D. Astruc, Inorg. Chem. 46 (2007) 1884.
[37] S. Schweizer, J.-M. Becht, C.L. Drian, Org. Lett. 9 (2007) 3777.
[38] G. Durgun, Ö. Aksın, L. Artok, J. Mol. Catal. A: Chem. 278 (2007) 189.
[39] F. Amoroso, S. Colussi, A.D. Zotto, J. Llorca, A. Trovarelli, J. Mol. Catal. A: Chem.
315 (2010) 197.
[40] M. Cai, Q. Xub, Y. Huanga, J. Mol. Catal. A: Chem. 271 (2007) 93.
[41] J.M. Richardson, C.W. Jones, J. Catal. 251 (2007) 80.
[42] J.D. Webb, S. MacQuarrie, K. McEleney, C.M. Crudden, J. Catal. 252 (2007) 97.
Acknowledgements
Financial support from the Ministry of Environment and Forest
(MoEF), Government of India, by a grant (F. No. 19/5/2005-RE) (to
SK) is gratefully acknowledged. Assistance from CAS programme,
Department of Chemistry, Jadavpur University and FIST pro-
gramme, Department of Science and Technology, Govt. of India is
also acknowledged.