Page 7 of 8
The Journal of Organic Chemistry
examples, see: (c) Loh, Y. Y.; Nagao, K.; Hoover, A. J.; Hesk, D.;
1
2
3
4
5
6
7
8
9
Rivera, N. R.; Colletti, S. L.; Davies, I. W.; MacMillan, D. W. C.
Photoredox-catalyzed deuteration and tritiation of pharmaceutical
compounds. Science 2017, 358, 1182-1187. (d) Neubert, L.; Michalik,
D.; Bꢀhn, S.; Imm, S.; Neumann, H.; Atzrodt, J.; Derdau, V.; Holla,
W.; Beller, M. Ruthenium-Catalyzed Selective α,β-Deuteration of
Bioactive Amines. J. Am. Chem. Soc. 2012, 134, 12239-12244. (e)
Hale, L. V. A.; Szymczak, N. K. Stereoretentive Deuteration of α-
*E-mail: jie_an@cau.edu.cn.
Yuxuan Ding: 0000-0002-4201-2689
Shihui Luo: 0000-0002-5661-4082
Jie An: 0000-0002-1521-009X
Chiral Amines with D
2
O. J. Am. Chem. Soc. 2016, 138, 13489-13492.
(
f) Pony Yu, R.; Hesk, D.; Rivera, N.; Pelczer, I.; Chirik, P. J. Iron-
Catalysed Tritiation of Pharmaceuticals. Nature 2016, 529, 195-199.
(g) Pieters, G.; Taglang, C.; Bonnefille, E.; Gutmann, T.; Puente, C.;
Berthet, J.-C.; Dugave, C.; Chaudret, B.; Rousseau, B. Regioselective
and Stereospecific Deuteration of Bioactive Aza Compounds by the
Use of Ruthenium Nanoparticles. Angew. Chem., Int. Ed. 2014, 53,
‡
These authors contributed equally.
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
2
30-234. (h) Chatterjee, B.; Krishnakumar, V.; Gunanathan, C. Selec-
We thank National Key Research and Development Plan of China
2017YFD0200504), National Natural Science Foundation of
China (No. 21602248), the Natural Science Foundation of Beijing
Municipality (No. 2192026) and Tianjin Haiyi Tech. Ltd. for
financial support and Ms Lingxin Kong for the design of cover
art. J. An would like to thank Dr Lijun Wang for mentoring.
tive α-Deuteration of Amines and Amino Acids Using D O. Org. Lett.
2
(
2016, 18, 5892-5895. (i) Michelotti, A.; Rodrigues, F.; Roche, M.
Development and Scale-Up of Stereoretentive α-Deuteration of
Amines. Org. Process Res. Dev. 2017, 21, 1741-1744.
(
7) (a) Ding, Y.; Luo, S.; Adijiang, A.; Zhao, H.; An, J. Reductive
Deuteration of Nitriles: The Synthesis of α,α-Dideuterio Amines by
Sodium-Mediated Electron Transfer Reactions. J. Org. Chem. 2018,
8
Adijiang, A.; Ling, Y.; An, J. Transition-Metal-Free, Selective Re-
ductive Deuteration of Terminal Alkynes with Sodium Dispersions
1
and EtOD-d . Org. Lett. 2018, 20, 3010-3013. (c) Zhang, B.; Li, H.;
Ding, Y.; Yan, Y.; An, J. Reduction and Reductive Deuteration of
Tertiary Amides Mediated by Sodium Dispersions with Distinct Pro-
ton Donor-Dependent Chemoselectivity. J. Org. Chem. 2018, 83,
3, 12269-12274. (b) Han, M.; Ding, Y.; Yan, Y.; Li, H.; Luo, S.;
(1) For recent reviews, see: (a) Pirali, T.; Sera, M.; Cargnin, S.;
Genazzani, A. A. Applications of Deuterium in Medicinal Chemistry.
J. Med. Chem. 2019, 62, 5276-5297. (b) Atzrodt, J.; Derdau, V.; Kerr,
W. J.; Reid, M. Deuterium-and Tritium-Labelled Compounds: Appli-
cations in the Life Sciences. Angew. Chem., Int. Ed. 2018, 57, 1758-
1784. (c) Gant, T. G. Using Deuterium in Drug Discovery: Leaving
the Label in the Drug. J. Med. Chem. 2014, 57, 3595-3611. For se-
lected recent examples, see: (d) Mullard, A. Deuterated Drugs Draw
Heavier Backing. Nat. Rev. Drug Discovery 2016, 15, 219-221. (e)
Katsnelson, A. Heavy Drugs Draw Heavy Interest from Pharma
Backers. Nat. Med. 2013, 19, 656.
6
006-6014. (d) Han, M.; Ma, X.; Yao, S.; Ding, Y.; Yan, Z.; Adijiang,
A.; Wu, Y. Li, H.; Zhang, Y.; Lei, P.; Ling, Y.; An, J. Development
of a Modified Bouveault–Blanc Reduction for the Selective Synthesis
of α,α-Dideuterio Alcohols. J. Org. Chem. 2017, 82, 1285-1290. (e)
Li, H.; Zhang, B.; Dong, Y.; Liu, T.; Zhang, Y.; Nie, H.; Yang, R.;
Ma, X.; Ling, Y.; An, J. A Selective and Cost-Effective Method for
the Reductive Deuteration of Activated Alkenes. Tetrahedron Lett.
(2) Schmidt, C. First Deuterated Drug Approved. Nat. Biotechnol.
2
017, 35, 493-494.
3) (a) Belleau, B.; Burba, J.; Pindell, M.; Reiffenstein, J. Effect of
2
017, 58, 2757-2760.
(8) For selected recent reviews, see: (a) Szostak, M.; Spain, M.;
(
Deuterium Substitution in Sympathomimetic Amines on Adrenergic
Responses. Science 1961, 133, 102-104. (b) Schneider, F.; Erisson, L.;
Beygi, H.; Bradbury, M.; Cohen-barak, O.; Grachev, I. D.; Guzy, S.;
Loupe, P. S.; Levi, M.; Mcdonald, M.; Savola, J.-M.; Papapetropou-
los, S.; Tracewell, W. G.; Velinova, M.; Spiegelstein, O. Pharmacoki-
netics, Metabolism and Safety of Deuterated L-DOPA (SD-
Procter, D. J. Recent Advances in the Chemoselective Reduction of
Functional Groups Mediated by Samarium(II) Iodide: a Single Elec-
tron Transfer Approach. Chem. Soc. Rev. 2013, 42, 9155-9183. (b)
Szostak, M.; Procter, D. J. Beyond Samarium Diiodide: Vistas in
Reductive Chemistry Mediated by Lanthanides (II). Angew. Chem.,
Int. Ed. 2012, 51, 9238-9256. (c) Shi, S.; Szostak, M. Synthesis of
Nitrogen Heterocycles Using Samarium(II) Iodide. Molecules. 2017,
1
077)/Carbidopa Compared to L-DOPA/Carbidopa Following Single
Oral Dose Administration in Healthy Subjects. Br. J. Clin. Pharmacol.
018, 84, 2422-2432. (c) Schofield, J.; Derdau, V.; Atzrodt, J.; Zane,
2
2, 2018. (d) Shi, S.; Szostak, M. Aminoketyl Radicals in Organic
2
Synthesis: Stereoselective Cyclization of Five- and Six-Membered
Cyclic Imides to 2-Azabicycles Using SmI
5144-5147.
P.; Guo, Z.; van Horn, R.; Czepczor, V.; Stoltz, A.; Pardon, M. Effect
of Deuteration on Metabolism and Clearance of Nerispirdine (HP184)
and AVE5638. Bioorg. Med. Chem. 2015, 23, 3831-3842.
(4) Cheng, T. Y. D.; Shelver, W. L.; Hong, C. C.; McCann, S. E.;
Davis, W.; Zhang, Y.; Ambrosone, C. B.; Smith, D. J. Urinary Excre-
tion of the β-Adrenergic Feed Additives Ractopamine and Zilpaterol
in Breast and Lung Cancer Patients. J. Agric. Food Chem. 2016, 64,
2 2
–H O. Org. Lett. 2015, 17,
(
9) (a) Amiel-Levy, M.; Hoz, S. Guidelines for the Use of Proton
2
Donors in SmI Reactions: Reduction of α-Cyanostilbene. J. Am.
Chem. Soc. 2009, 131, 8280-8284. (b) Dahlén, A.; Nilsson, Å.;
Hilmersson, G. Estimating the Limiting Reducing Power of
2 2 2 2
SmI /H O/Amine and YbI /H O/Amine by Efficient Reduction of
Unsaturated Hydrocarbons. J. Org. Chem. 2006, 71, 1576-1580. (c)
Hasegawa E.; Curran D. P. Additive and Solvent Effects on Samari-
um Diiodide Reductions: the Effects of Water and DMPU. J. Org.
Chem. 1993, 58, 5008-5010.
7
632-7639.
5) (a) Perel, J. M.;Dawson, D. K.; Dayton, P. G.; Goldberg, L. I.
(
α,α'- and β,β'-Deuterium-Labeled Dopamine. Synthesis and Pharma-
cologic Actions. J. Med. Chem. 1972, 15, 714-716. For other repre-
sentative examples of reductive deuteration reactions, see (b) Sa-
kamoto, T.; Mori, K.; Akiyama, T. Chiral Phosphoric Acid Catalyzed
Enantioselective Transfer Deuteration of Ketimines by Use of Benzo-
thiazoline as a Deuterium Donor: Synthesis of Optically Active Deu-
terated Amines. Org. Lett. 2012, 14, 3312-3315. (c) Wang, X.; Zhu,
M.; Schuman, D. P.; Zhong, D.; Wang, W.; Wu, L.; Liu, W.; Stoltz, B.
M.; Liu, W. General and Practical Potassium Methoxide/Disilane-
Mediated Dehalogenative Deuteration of (Hetero)Arylhalides. J. Am.
Chem. Soc. 2018, 140, 10970-10974.
(6) For recent reviews, see: (a) Atzrodt, J.; Derdau, V.; Kerr, W. J.;
Reid, M. C−H Functionalisation for Hydrogen Isotope Exchange.
Angew. Chem., Int. Ed. 2018, 57, 3022-3047. (b) Atzrodt, J.; Derdau,
V.; Fey, T.; Zimmermann, J. The Renaissance of H/D Exchange.
Angew. Chem., Int. Ed. 2007, 46, 7744-7765. For selected recent
(
10) Szostak, M.; Spain, M.; Procter, D. Selective Synthesis of α,α-
Dideuterio Alcohols by the Reduction of Carboxylic Acids Using
SmI and D O as Deuterium Source under SET Conditions. Org. Lett.
014, 16, 5052-5055.
11) Szostak, M.; Sautier, B.; Spain, M.; Procter, D. Electron
Transfer Reduction of Nitriles Using SmI –Et N–H O: Synthetic
Utility and Mechanism. Org. Lett. 2014, 16, 1092-1095.
12) (a) Sabatini, M. T.; Karaluka, V.; Lanigan, R. M.; Boulton, L.
2
2
2
(
2
3
2
(
T.; Badland, M.; Sheppard, T. D. Protecting‐Group‐Free Ami-
dation of Amino Acids using Lewis Acid Catalysts. Chem.–Eur. J.
2
Synthesis of Fully Substituted Pyrazoles via Regio- and Chemoselec-
tive Metalations. Org. Lett. 2009, 11, 3326-3329. (c) Watson, L. Mak-
018, 24, 7033-7043. (b) Despotopoulou, C.; Klier, L.; Knochel, P.
7
ACS Paragon Plus Environment