RSC Advances
Paper
and the temporal evolution of the PL was resolved by an
Optronis Optoscope streak camera system. The streak camera
system has an ultimate temporal resolution of ꢃ10 ps when
operated at the shortest time window of 330 ps.
6 T. Chen, G.-B. Pan, H. Wettach, M. Fritzsche, S. H ¨o ger,
L.-J. Wan, H.-B. Yang, B. H. Northrop and P. J. Stang, J. Am.
Chem. Soc., 2010, 132, 1328–1333.
7 R. Chakrabarty, P. S. Mukherjee and P. J. Stang, Chem. Rev.,
2011, 111, 6810–6918.
8
9
T. Chen, G.-B. Pan, H. Wettach, M. Fritzsche, S. H ¨o ger,
L.-J. Wan, H.-B. Yang, B. H. Northrop and P. J. Stang, J. Am.
Chem. Soc., 2010, 132, 1328–1333.
O. Ivasenko, J. M. MacLeod, K. Y. Chernichenko,
E. S. Balenkova, R. V. Shpanchenko, V. G. Nenajdenko,
F. Rosei and D. F. Perepichka, Chem. Commun., 2009, 1192.
0 M. Ruben, U. Ziener, J. M. Lehn, V. Ksenofontov, P. G u¨ tlich
and G. Vaughan, Chem.–Eur. J., 2004, 11, 94–100.
1 T. Bauer, A. Schl u¨ ter and J. Sakamoto, Synlett, 2010, 877–880.
2 Z. B. Lim, H. Li, S. Sun, J. Y. Lek, A. Trewin, Y. M. Lam and
A. C. Grimsdale, J. Mater. Chem., 2012, 22, 6218.
Conclusions
2
+
Synthesis and characterization of various Zn terpyridine 2D
self-assembled networks were described in this work. Their
thermal and photophysical properties were studied in detail
and compared to the constituent chelating terpyridine ligands.
These 2D co-ordination networks are found to be thermally
stable as compared to their starting materials, especially at very
high temperature due to the effect of zinc metal ion co-
ordination.
1
1
1
2
+
2
D Zn supramolecular networks were compared to the 3D
2
+
2+ 13 Y. Ohba, K. Kanaizuka, M. Murata and H. Nishihara,
Macromol. Symp., 2006, 235, 31–38.
Zn networks in order to understand the inuence of the Zn
ions on the photophysical properties of the designed structures.
The synthesized 2D Zn co-ordination networks revealed
marked red shis in the emission spectra like the 3D Zn
networks made up of similar building blocks. It was observed
that the presence of the Zn ions in the synthesized model
complexes revealed interesting spectroscopic properties, in
particular, enhanced uorescence and uorescence life time.
Thus, from the experimental results it was concluded that the
characteristics of the basic building units are considerably
inuencing the photophysical properties of the Zn co-ordi-
nation networks. Such Zn systems could be potentially inter-
esting for the construction of optoelectronic devices.
2
+
14 L. J. Liang, X. J. Zhao and C. Z. Huang, Analyst, 2012, 137,
2
+
953.
1
1
1
5 X. Zhou, X. Jin, D. Li and X. Wu, Chem. Commun., 2011, 47,
3921.
6 X. Chen, Q. Zhou, Y. Cheng, Y. Geng, D. Ma, Z. Xie and
L. Wang, J. Lumin., 2007, 126, 81–90.
7 S.-H. Hwang, C. N. Mooreeld, P. Wang, J.-Y. Kim, S.-W. Lee
and G. R. Newkome, Inorg. Chim. Acta, 2007, 360, 1780–1784.
2
+
2
+
18 A. Winter, C. Friebe, M. Chiper, M. D. Hager and
2
+
U. S. Schubert, J. Polym. Sci., Part A: Polym. Chem., 2009,
47, 4083–4098.
1
9 T. He, D. Rajwar, L. Ma, Y. Wang, Z. B. Lim, A. C. Grimsdale
and H. Sun, Appl. Phys. Lett., 2012, 101, 213302.
Acknowledgements
20 D. W. Fink and W. E. Ohnesorge, J. Phys. Chem., 1970, 74, 72–
7.
7
We acknowledge the nancial support, including the award of a
Research Student Scholarship to D.R., from the Singapore
Ministry of Education through the Academic Research Fund
Tier 1 (SUG 40/06 and RG19/07) and also from the National
Research Foundation through Competitive Research Project 5-
2
2
2
2
1 U. S. Schubert, C. Eschbaumer, O. Hien and P. R. Andres,
Tetrahedron Lett., 2001, 42, 4705–4707.
2 X. Yan, F. Wang, B. Zheng and F. Huang, Chem. Soc. Rev.,
2012, 41, 6042–6065.
3 A. Wild, A. Winter, F. Schl u¨ tter and U. S. Schubert, Chem.
Soc. Rev., 2011, 40, 1459–1511.
4 A. Wild, C. Friebe, A. Winter, M. D. Hager, U. W. Grummt
and U. S. Schubert, Eur. J. Org. Chem., 2010, 2010, 1859–1868.
5 G. R. Newkome, Science, 2006, 312, 1782–1785.
2009-04 “Towards Efficient Sunlight Harvesting”. A.T holds a
Royal Society fellowship. We thank Dr Zviad Tsakadze and Miss
Anantha P. from the School of Materials Science and Engi-
neering, NTU for performing SAXS and TEM measurements
respectively.
2
2
6 A. L. Kanibolotsky and P. J. Skabara, Chem. Soc. Rev., 2010,
39, 2695–2728.
2
7 V. Duprez, M. Biancardo, H. Spanggaard and F. C. Krebs,
Macromolecules, 2005, 38, 10436–10448.
Notes and references
1
H. Hofmeier and U. S. Schubert, Chem. Soc. Rev., 2004, 33, 28 C. J. Kuehl, S. D. Huang and P. J. Stang, J. Am. Chem. Soc.,
73. 2001, 123, 9634–9641.
S. Burattini, H. M. Colquhoun, J. D. Fox, D. Friedmann, 29 B. H. Northrop, Y.-R. Zheng, K.-W. Chi and P. J. Stang, Acc.
3
2
B. W. Greenland, P. J. F. Harris, W. Hayes, M. E. Mackay
and S. J. Rowan, Chem. Commun., 2009, 6717.
F. Cacialli, P. Samor `ı and C. Silva, Mater. Today, 2004, 7, 24–
Chem. Res., 2009, 42, 1554–1563.
30 A. D'Al ´e o, E. Cecchetto, L. De Cola and R. M. Williams,
Sensors, 2009, 9, 3604–3626.
3
4
5
3
2.
S. De Feyter and F. C. De Schryver, Chem. Soc. Rev., 2003, 32,
39–150.
31 Z. Zheng, C. S. Ruiz-Vargas, T. Bauer, A. Rossi, P. Payamyar,
A. Sch u¨ tz, A. Stemmer, J. Sakamoto and A. D. Schl u¨ ter,
Macromol. Rapid Commun., 2013, 34, 1670–1680.
1
A. Langner, S. L. Tait, C. Rajadurai, M. Ruben and K. Kern, 32 J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell,
Chem. Commun., 2007, 4860–4862.
H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky,
17692 | RSC Adv., 2014, 4, 17680–17693
This journal is © The Royal Society of Chemistry 2014