Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C6CC02603F
COMMUNICATION
Journal Name
12ꢀmyristate 13ꢀacetate (PMA).11 With LPS/ PMA
stimulation, prominent enhanced fluorescence signals were
observed from the living RAW 264.7 cells compared with the
controls (Fig. a and 5b), indicating the activation of the probe
PtzꢀAO under mimic inflammatory conditions. When Nꢀ
acetylcysteine (NAC), a general antioxidant,12 was used to treat
the cells together with LPS/PMA elicitation, no obvious
fluorescence was observed after incubation with the probe Ptzꢀ
AO (Fig. c). The result indicated that NAC scavenges
endogenously generated HOCl from RAW 264.7 cells and
effectively inhibited the activation of the probe PtzꢀAO. These
results clearly demonstrated that the probe PtzꢀAO can
efficiently detect HOCl produced in stressed cells.
In conclusion, we have designed and synthesized a novel
fluorescence probe PtzꢀAO by the reaction of Nꢀ(3ꢀbromoꢀ
propyl)phenothiazine with acridine orange. PtzꢀAO functions as
a highly HOClꢀselective fluorescent probe with a fast (within 5
s) and sensitive response, and PtzꢀAO exhibits excellent
properties as HOClꢀspecific fluorescent probe for biological
applications, including pHꢀindependence and tolerance to
photobleaching during excitation laser irradiation. With the
probe PtzꢀAO, we successfully conducted exogenous,
endogenous and realꢀtime imaging of HOCl by means of
fluorescence microscopy. We anticipate that this probe should
prove useful for investigation of the wide range of biological
functions of HOCl.
Tano, Y. Chuman, E. Sakuda, T. Taketsugu, K. Sakaguchi, N.
Kitamura and K. Tanino, Chem. Sci., 2015, 6, 1083.
7
(a) Q. A. Best, N. Sattenapally, D. J. Dyer, C. N. Scott and
M. E. Mc Carroll, J. Am. Chem. Soc., 2013, 135, 13365; (b) J.
T. Hou, K. Li, J. Yang, K. K. Yu, Y. X. Liao, Y. Z. Ran, Y.
H. Liu, X. D. Zhou and X. Q. Yu, Chem. Commun., 2015, 51,
6781; (c) H. D. Xiao, K. Xin, H. F. Dou, G. Yin, Y. W. Quan
and R. Y. Wang, Chem. Commun., 2015, 51, 1442; (d) G. H.
Cheng, J. L. Fan, W. Sun, J. F. Cao, C. Hu and X. J. Peng,
Chem. Commun., 2014, 50, 1018; (e) W. Zhang, W. Liu, P.
Li, J. Q. Kang, J. Y. Wang, H. Wang and B. Tang. Chem.
Commun., 2015, 51, 10150; (f) B. S. Wang, P. Li, F. B. Yu, P.
Song, X. F. Sun, S. Q. Yang, Z. R. Lou and K. L. Han, Chem.
Commun., 2013, 49, 1014; (g) Y. Koide, Y. Urano, K.
Hanaoka, T. Terai and T. Nagano, J. Am. Chem. Soc., 2011,
133, 5680; (h) Q. L. Xu, K. A. Lee, S. Y. Lee, K. M. Lee, W.
J. Lee and J. Y. Yoon, J. Am. Chem. Soc., 2013, 135, 9944;
(i) J. Zhou, L. H. Li, W. Shi, X. H. Gao, X. H. Li and H. M.
Ma, Chem. Sci., 2015, 6, 4884; (j) J. T. Hou, M. Y. Wu, K.
Li, J. Yang, K. K. Yu, Y. M. Xie and X. Q. Yu, Chem.
Commun., 2014, 50, 8640; (k) S. R. Liu and S. P. Wu, Org.
Lett., 2013, 15, 878; (l) J. J. Hu, N. K. Wong, Q. S. Gu, X. Y.
Bai, S. Ye and D. Yang, Org. Lett., 2014, 16, 3544; (m) H.
Zhu, J. L. Fan, J. Y. Wang, H. Y. Mu and X. J. Peng, J. Am.
Chem. Soc.,2014, 136, 12820; (n) G. H. Cheng, J. L. Fan, W.
Sun, K. Sui, X. Jin, J. Y. Wang and X. J. Peng, Analyst, 2013,
138, 6091; (o) J. Liu, Y. Q. Sun, H. X. Zhang, Y. Y. Huo, Y.
W. Shi and W. Guo, Chem. Sci., 2014, 5, 3183; (p) G. P. Li,
D. J. Zhu, Q. Liu, L. Xue and H. Jiang. Org. Lett., 2013, 15,
2002; (q) H. Li, F. S. Kim, G. Ren and S. A. Jenekhe, J. Am.
Chem. Soc., 2013, 135, 14920.
8
9
(a) S. Nafisi, A. A. Saboury, N. Keramat, J. F. Neault and H.
We gratefully acknowledge the Natural Science Foundation
of China (NNSFC 21272172), and the Natural Science
Foundation of Tianjin (12JCZDJC21000).
A. TajmirꢀRiahi, J. Mol. Struct, 2007, 827, 35;
(b) S.
Moradpourhafshejani, J. H. Hedley, A. O. Haigh, A. R. Pike
and E. M. Tuite, RSC Adv., 2013, 3, 18164.
(a) P. Du and S. J. Lippard, Inorg. Chem., 2010, 49, 10753;
(b) B. S. Wang, P. Li, F. B. Yu, J. S. Chen, Z. J. Qu and K. L.
Han, Chem. Commun., 2013, 49, 5790.
Notes and references
1
(a) J. D. Lambeth, Free radical Bio. Med., 2007, 43, 332; (b)
L. Yuan, L. Wang, B. K. Agrawalla, S. J. Park, H. Zhu, B.
Sivaraman, J. Peng, Q. H. Xu and Y. T. Chang, J. Am. Chem.
Soc., 2015, 137, 5930; (c) K. P. Kepp, Chem. Rev., 2012, 112,
5193.
10 E. Pelizzetti, D. Meisel, W. A. MuIac, and P. Neta, J. Am.
Chem. Soc., 1979, 101, 6954.
11 S. E. GomezꢀMejiba, Z. Zhai, M. S. Gimenez, M. T. Ashby,
J. Chilakapati, K. Kitchin, R. P. Mason and D. C. Ramirez, J.
Biol. Chem., 2010, 285, 20062.
2
M. Whiteman, P. Rose, J. L. Siau, N. S. Cheung, G. S. Tan,
B. Halliwell and J. S. Armstrong, Free Radical Biol. Med.,
2005, 38, 1571.
12 K. C. Sheng, G. A. Pietersz, C. K. Tang, P. A. Ramsland and
V. Apostolopoulos, J. Immunol., 2010, 184, 2863.
3
4
5
6
Z. Sun, F. Liu, Y. Chen, P. K. H. Tam and D. Yang, Org.
Lett. 2008, 10, 2171.
A. Daugherty, J. L. Dunn, D. L. Rateri and J. W. Heinecke, J.
Clin. Invest., 1994, 94, 437.
L. Moberg and B. Karlberg, Anal. Chim. Acta., 2000, 407,
127.
(a) X. H. Li, X. H. Gao, W. Shi and H. M. Ma, Chem. Rev.,
2014, 114, 590; (b) X. L. Sun, Q. L. Xu, G. Kim, S. E.
Flower, J. P. Lowe, J. Yoon, J. S. Fossey, X. H. Qian, S. D.
Bull and T. D. James, Chem. Sci., 2014, 5, 3368; (c) T. Guo,
L. Cui, J. N. Shen, R. Wang, W. P. Zhu, Y. F. Xu and X. H.
Qian, Chem. Commun., 2013, 49, 1862; (d) L. Yuan, F. P. Jin,
Z. B. Zeng, C. B. Liu, S. L. Luo and J. S. Wu, Chem. Sci.,
2015, 6, 2360; (e) X. F. Yang, Q. Huang, Y. G. Zhong, Z. Li,
H. Li, M. Lowry, J. O. Escobedo and R. M. Strongin, Chem.
Sci., 2014, 5, 2177; (f) Y. You and W. Nam, Chem. Sci.,
2014, 5, 4123; (g) P. Cheruku, J. H. Huang, H. J. Yen, R. S.
Iyer, K. D. Rector, J. S. Martinez and H. L. Wang, Chem.
Sci., 2015, 6, 1150; (h) J. Pancholi, D. J. Hodson, K. Jobe, G.
A. Rutter, S. M. Goldup and M. Watkinson, Chem. Sci., 2014,
5, 3528; (i) A. Borrmann and J. C. M. Hest, Chem. Sci., 2014,
5, 2123; (j) K. Namba, A. Osawa, A. Nakayama, A. Mera, F.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins