Angewandte Chemie International Edition
10.1002/anie.201811834
COMMUNICATION
We extended the carbonyl guest to other molecules A4-15
d) V. C. Wakchaure, K. C. Ranjeesh, Goudappagouda, T. Das, K.
Vanka, R. Gonnade, S. S. Babu, Chem. Commun. 2018, 54, 6028.
a) O. Bolton, K. Lee, H.-J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3,
(
Scheme 2) and found that only anthraquinone A14 effectively
[
4]
improved phosphorescence (Figure S35, S36). Since 2 exhibited
improved phosphorescence in combination with A2 (1:1), a
liquid phosphor composite was developed by mixing of 2 with A2
205; b) Z. Mao, Z. Yang, Y. Mu, Y. Zhang, Y.-F. Wang, Z. Chi, C.-C. Lo,
S. Liu, A. Lien, J. Xu, Angew. Chem. 2015, 127, 6368; Angew. Chem.
Int. Ed. 2015, 54, 6270; c) Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T.
Chen, Z. Wang, H. Li, R. Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14,
685; d) S. M. A. Fateminia, Z. Mao, S. Xu, Z. Yang, Z. Chi, B. Liu,
Angew. Chem. 2017, 129, 12328; Angew. Chem. Int. Ed. 2017, 56,
12160.
(
1:1) and this combination realised a large area (10x10 cm)
paintable composite with improved RTP (Figure 4d). RTP liquid
composite 2+A2 exhibit stable luminescence features, but when
the ratio of A2 is high (1), composite solidifies immediately. We
strongly believe that RT liquid feature of 2 enabled to deliver a
paintable RTP composite and this demonstration will be a
potential alternate for the tedious and expensive processing
methods of crystalline RT phosphors.
[
5]
a) M. Sang Kwon, D. Lee, S. Seo, J. Jung, J. Kim, Angew. Chem. 2014,
1
26, 11359; Angew. Chem. Int. Ed. 2014, 52, 11359; b) H. Mieno, R.
Kabe, N. Notsuka, M. D. Allendorf, C. Adachi, Adv. Optical Mater. 2016,
, 1015.
4
[
[
[
6]
7]
8]
a) H. Chen, X. Ma, S. Wu, H. Tian, Angew. Chem. 2014, 126, 14373;
Angew. Chem. Int. Ed. 2014, 53, 14149; b) L. Xu, L. Zou, H. Chen, X.
Ma, Dyes Pigm. 2017, 142, 300.
In conclusion, hitherto unknown RTP organic liquid is
materialised by introducing a long branched alkyl chain on
bromonaphthalimide. A comparison clearly showed that even
liquefaction of bromonaphthalimide allowed the molecule to
retain RTP. The suppressed nonradiative decay by available
viscous medium, reduced ∆EST and presence of weak Br···O
halogen bonding facilitated RTP for solvent-free liquid in air. As
a new strategy, paintable RTP composite with significantly
improved phosphorescent quantum yield and lifetime is
prepared by mixing the liquid phosphor with carbonyl guests. A
a) S. S. Babu, T. Nakanishi, Chem. Commun. 2013, 49, 9373; b) S. S.
Babu, Phys. Chem. Chem. Phys. 2015, 17, 3950; c) A. Ghosh, T.
Nakanishi, Chem. Commun. 2017, 53, 10344.
a) S. S. Babu, J. Aimi, H. Ozawa, N. Shirahata, A. Saeki, S. Seki, A.
Ajayaghosh, H. Möhwald, T. Nakanishi, Angew. Chem. 2012, 124,
3447; Angew. Chem. Int. Ed. 2012, 51, 3391; b) S. S. Babu, M. J.
Hollamby, J. Aimi, H. Ozawa, A. Saeki, S. Seki, K. Kobayashi, K.
Hagiwara, M. Yoshizawa, H. Möhwald, T. Nakanishi, Nat. Commun.
2
013, 4, 1969; c) P. Duan, N. Yanai, N. Kimizuka, J. Am. Chem. Soc.
013, 135, 19056; d) F. Lu, T. Takaya, K. Iwata, I. Kawamura, A. Saeki,
2
2
relatively large area (10x10 cm ) RTP coating is realised by
M. Ishii, K. Nagura, T. Nakanishi, Sci. Rep. 2017, 7, 3416; e) T.
Machida, R. Taniguchi, T. Oura, K. Sada, K. Kokado, Chem. Commun.
using the liquid composite paint. We strongly believe that our
RTP liquid composite formulation will be much appreciated as
this soft material exhibits the potential to make innovative
changes in large area flexible lighting applications.
2017, 53, 2378.
[9]
a) N. Kobayashi, T. Kasahara, T. Edura, J. Oshima, R. Ishimatsu, M.
Tsuwaki, T. Imato, S. Shoji, J. Mizuno, Sci. Rep. 2015, 5, 14822; b) T.
Kasahara, S. Matsunami, T. Edura, R. Ishimatsu, J. Oshima, M.
Tsuwaki, T. Imato, S. Shoji, C. Adachi, J. Mizuno, Sens. Actuators, B
2
015, 207, 481; c) A. S. D. Sandanayaka, L. Zhao, D. Pitrat, J. C.
Acknowledgements
Mulatier, T. Matsushima, C. Andraud, J. H. Kim, J. C. Ribierre, C.
Adachi, Appl. Phys. Lett. 2016, 108, 223301.
Goudappagouda, VCW and KCR acknowledge UGC, India
for fellowship. This work is supported by SERB, Govt. of
India, EMR/2014/000987. We thank Dr. S. Maiti (TIFR,
Mumbai), Dr. N. S. Rawat (BARC, Mumbai), and Dr. P. P.
Pillai (IISER, Pune) for phosphorescence measurements.
[10] a) X. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner, M. R.
Wasielewski, S. R. Marder, Adv. Mater. 2011, 23, 268; b) S.-L. Suraru,
F. Würthner, Angew. Chem. 2014, 126, 7558; Angew. Chem. Int. Ed.
2014, 53, 7428; c) M. A. Kobaisi, S. V. Bhosale, K. Latham, A. M.
Raynor, S. V. Bhosale, Chem. Rev. 2016, 116, 11685; d) A. Sarkar, S.
Dhiman, A. Chalishazar, S. J. George, Angew. Chem. 2017, 129,
13955; Angew. Chem. Int. Ed. 2017, 56, 13767.
[
11] a) B. Ventura, A. Bertocco, D. Braga, L. Catalano, S. d’Agostino, F.
Grepioni, P. Taddei, J. Phys. Chem. C 2014, 118, 18646; b) X. Chen, C.
Xu, T. Wang, C. Zhou, J. Du, Z. Wang, H. Xu, T. Xie, G. Bi, J. Jiang, X.
Zhang, J. N. Demas, C. O. Trindle, Y. Luo, G. Zhang, Angew. Chem.
Keywords: phosphorescence • organic liquids • luminescent
thermometer • liquid phosphor • excimer
[1]
a) X. Yang, G. Zhou, W-Y. Wong, Chem. Soc. Rev. 2015, 44, 8484; b)
M. Baroncini, G. Bergamini, P. Ceroni, Chem. Commun. 2017, 53,
2
016, 128, 10026; Angew. Chem. Int. Ed. 2016, 55, 9872; c) H. Chen, L.
Xu, X. Ma, H. Tian, Polym. Chem. 2016, 7, 3989; d) H. Chen, X. Yao, X.
Ma, H. Tian, Adv. Optical Mater. 2016, 4, 1397.
2081; c) A. Forni, E. Lucenti, C. Botta, E. Cariati, J. Mater. Chem. C
2
018, 6, 4603.
[
12] G. Zhang, J. Chen, S. J. Payne, S. E. Kooi, J. N. Demas, C. L. Fraser,
J. Am. Chem. Soc. 2007, 129, 8942.
[
2]
3]
a) R. Kabe, N. Notsuka, K. Yoshida, C. Adachi, Adv. Mater. 2016, 28,
55; b) G. Zhang, G. M. Palmer, M. W. Dewhirst, C. L. Fraser, Nat.
6
[13] J. Wei, B. Liang, R. Duan, Z. Cheng, C. Li, T. Zhou, Y. Yi, Y. Wang,
Angew. Chem. 2016, 55, 15589; Angew. Chem. Int. Ed. 2016, 55,
Mater. 2009, 8, 747.
[
a) Y. Gong, G. Chen, Q. Peng, W. Z. Yuan, Y. Xie, S. Li, Y. Zhang, B. Z.
Tang, Adv. Mater. 2015, 27, 6195; b) Y. Shoji, Y. Ikabata, Q. Wang, D.
Nemoto, A. Sakamoto, N. Tanaka, J. Seino, H. Nakai, T. Fukushima, J.
Am. Chem. Soc. 2017, 139, 2728; c) J. Yang, Z. Ren, Z. Xie, Y. Liu, C.
Wang, Y. Xie, Q. Peng, B. Xu, W. Tian, F. Zhang, Z. Chi, Q. Li, Z. Li,
Angew. Chem. 2017, 129, 898; Angew. Chem. Int. Ed. 2017, 56, 880;
1
5589.
[
14] a) G. R. Desiraju, P. S. Ho, L. Kloo, A. C. Legon, R. Marquardt, P.
Metrangolo, P. Politzer, G. Resnati, K. Rissanen, Pure Appl. Chem.
2013, 85, 1711; b) G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A.
Priimagi, G. Resnati, G. Terraneo, Chem. Rev. 2016, 116, 2478.
This article is protected by copyright. All rights reserved.