2
48
M. Moghadam et al. / Inorganic Chemistry Communications 13 (2010) 244–249
Mo
(L)n - 2
Reflux
+
Mo(L)n
O
O
Ph
t-BuOOH
t-Bu
Ph
O
+
H
O
Mo(L)n - 2
H
H
O
H
C
O
+
Ph
CH2
t-BuOH
Ph
t-Bu
+
O
O
O
OH
O
Ph
H
t-Bu
t-Bu
Scheme 3.
Acknowledgment
Table 5
Investigation of [MoO
2
(acac)–POM] reusability in the epoxidation of cyclooctene.a
We acknowledge the support of this work by Centre of Excel-
lence of Chemistry of University of Isfahan (CECUI).
Run
Conversion (%)b after 8 h
Amount of Mo leached (%)c
1
2
3
4
100
88
88
2.5
0
0
References
88
0
a
Reaction conditions: cyclooctene (0.5 mmol), tert-BuOOH (1.5 mmol), catalyst
[1] G. Simonneaux, P. Le Maux, Y. Ferrand, J. Rault-Berthelot, Coord. Chem. Rev.
250 (2006) 2212.
[2] T. Luts, R. Frank, W. Suprun, S. Fritzsche, E. Hey-Hawkins, H. Papp, J. Mol. Catal.
A: Chem. 273 (2007) 250.
(
0.008 mmol), 1,2-DCE (2 ml), T = 75 °C.
b
GC yield.
Determined by ICP.
c
[
[
3] G. Sienel, R. Rieth, K.T. Rowbottom, Epoxides, VCH Publishers, New York, 1985.
4] A.K. Yudin, Aziridines and Epoxides in Organic Synthesis, Wiley-VCH,
Weinheim, 2006.
[
5] S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-Baltork, K.
Ghani, J. Iran. Chem. Soc. 5 (2008) S71.
6] G. Grivani, S. Tangestaninejad, A. Halili, Inorg. Chem. Commun. 10 (2007) 914.
7] D.V. Deubel, J. Sundermeyer, G. Frenking, Inorg. Chem. 39 (2000) 2314.
8] M. Jia, A. Seifert, W.R. Thiel, Chem. Mater. 15 (2003) 2174.
34]1 and showed that these compounds were inactive
0À
[
[
a
9
-SiW O
[
[
[
42]. Here, we used tert-BuOOH towards oxidation of cyclooctene
in the presence of only polyoxometalate and the results were the
same, indicating that the polyoxometalate was almost inactive.
The most advantage of MoO
geneous nature in the oxidation reactions. Therefore, this hetero-
geneous catalyst can be easily recovered and reused.
[9] J.M. Mitchell, N.S. Finney, J. Am. Chem. Soc. 123 (2001) 862.
[10] J. Artner, H. Bautz, F. Fan, W. Habicht, O. Walter, M. Döring, U. Arnold, J. Catal.
2
(acac)–POM catalyst is its hetero-
255 (2008) 180.
[
11] S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-Baltork, K.
Ghani, Inorg. Chem. Commun. 11 (2008) 270.
In order to show the reusability of the catalyst, cyclooctene was
used as model substrate. The reactions were performed as de-
scribed above. At the end of the reaction, the catalyst was filtered
and reused in the next run. The results showed that after the first
run, the amount of epoxides was 88%. This is due to the leaching
phenomenon, in which about 2.5% of initial Mo is leached in the
first run. In the next runs, no Mo was detected in the reaction mix-
ture (Table 5). To check that whether released Mo is being ab-
sorbed on the POM surface or bonded to POM, the catalyst has
been washed thoroughly with water, methanol and diethyl ether,
and used for epoxidation of cyclooctene with tert-BuOOH. The re-
sults showed that the same amount of leaching was observed. This
may due to the trapped Mo which is not been washed with solvent.
[12] A.O. Chong, K.B. Sharpless, J. Org. Chem. 42 (1977) 1587.
[
[
13] L. Feng, E. Urnezius, R.L. Luck, J. Organomet. Chem. 693 (2008) 1564.
14] J.A. Brito, H. Teruel, G. Muller, S. Massou, M. Gomez, Inorg. Chim. Acta 361
(
2008) 2740.
[15] R. Mbeleck, K. Ambroziak, B. Saha, D.C. Sherrington, React. Funct. Polym. 67
2007) 1448.
(
[
16] K. Ambroziak, R. Pelech, E. Milchert, T. Dziembowska, Z. Rozwadowski, J. Mol.
Catal. A: Chem. 211 (2004) 9.
[17] K.V.R. Chary, H. Ramakrishna, G.M. Dhar, J. Mol. Catal. 68 (1991) L25.
[
[
[
18] R.J. Angelici, Acc. Chem. Res. 21 (1988) 387.
19] N. Chantarasiri, T. Tuntulani, N. Chanma, Eur. Polym. J. 36 (2000) 889.
20] N. Ibrahim, S. Sharif, Eur. J. Chem. 4 (2007) 531.
[21] S. Battacharjee, J.A. Anderson, Chem. Commun. (2004) 554.
[
[
22] P.J. Gonzalez, C. Correia, I. Moura, C.D. Brondino, J.J.G. Moura, J. Inorg. Biochem.
00 (2006) 1015.
23] B.M. Barney, H.-I. Lee, P.C. Dos Santos, B.M. Hoffman, D.R. Dean, L.C. Seefeldt,
Dalton Trans. (2006) 2277.
1
In conclusion, we observed that the catalytic activity of MoO
2
(a-
[24] M.C. Durrant, Inorg. Chem. Commun. 4 (2001) 60.
[
[
25] P.C.H. Mitchell, Quarterly Rev., p. 103.
26] S.M. Bruno, J.A. Fernandes, L.S. Martins, I.S. Goncalves, M. Pillinger, P. Ribeiro-
Claro, J. Rocha, A.A. Valente, Catal. Today 114 (2006) 263.
cac) can be modified by a Keggin-type polyoxometalate through
2
covalent bonding. A strong electronic effect was observed upon
attachment of polyoxometalate, leading to an intramolecular
charge separation and description of (1) as a charge-transfer com-
plex [31,43,44]. The complex (1) exhibits a good catalytic activity
in the oxidation of various olefins including non-reactive terminal
[27] N.R. Pramanik, S. Ghosh, T.K. Raychaudhuri, S. Ray, R.J. Butcher, S.S. Manda,
Polyhedron 23 (2004) 1595.
[
28] S.M. Bruno, S.S. Balula, A.A. Valente, F.A. Almeida Paz, M. Pillinger, C. Sousa, J.
Klinowski, C. Freire, P. Ribeiro-Claro, I.S. Goncalves, J. Mol. Catal. A: Chem. 270
(2007) 185.
[
[
[
29] M. Masteri-Farahani, F. Farzaneh, M. Ghandi, Catal. Commun. 8 (2007) 6.
30] I. Bar-Nahum, R. Neumann, Chem. Commun. (2003) 2690.
31] I. Bar-Nahum, H. Cohen, R. Neumann, Inorg. Chem. 42 (2003) 3677.
2
olefins. The MoO (acac)–POM catalyst is a heterogeneous catalyst
and can be easily separated and reused.