by recovering the Schlenk flask with aluminium foil, until
discoloration of the dark solution. After this stirring period,
the mixture was filtered through Celites to give a pale yellow
filtrate. The solvent was removed under reduced pressure and
the resulting solid was dried under reduced pressure to afford a
pale yellow material (97% yield).
1H NMR (300.13 MHz, CD2Cl2, 295.1 K): d = 7.30 (d, 1H,
3JH–H = 1.6 Hz, CH2–N–CHQCH), 7.03 (d, 1H, 3JH–H = 1.6
Hz, CH3–N–CHQCH), 5.14–5.08 (m, 4H, H1), 5.07 (d, 1H,
3JH1–H2=3.5 Hz, H1), 5.03 (d, 1H, 3JH1–H2=3.3 Hz, H1), 5.00
5 For cyclodextrin-phosphane used during organometallic catalytic
processes, see: M. T. Reetz and S. R. Waldvogel, Angew. Chem.,
Int. Ed. Engl., 1997, 36, 865; M. T. Reetz, Catal. Today, 1998, 42,
399; M. T. Reetz, J. Heterocycl. Chem., 1998, 35, 1065–1073;
M. T. Reetz and C. Frombgen, Synthesis, 1999, 1555;
D. Armspach and D. Matt, Chem. Commun., 1999, 1073;
Y. T. Wong, C. Yang, K. C. Ying and G. Jia, Organometallics,
2002, 21, 1782; E. Engeldinger, D. Armspach, D. Matt and
P. G. Jones, Chem.–Eur. J., 2003, 9, 3091–3105; L. Poorters,
D. Armspach, D. Matt and L. Toupet, Dalton Trans., 2007,
3195; C. Machut-Binkowski, F. X. Legrand, N. Azaroual,
S. Tilloy and E. Monflier, Chem.–Eur. J., 2010, 16, 10195;
S. Guieu, E. Zaborova, Y. Bleriot, G. Poli, A. Jutand,
D. Madec, G. Prestat and M. Sollogoub, Angew. Chem., Int. Ed.,
2010, 49, 2314; R. Gramage-Doria, D. Armspach, D. Matt and
L. Toupet, Angew. Chem., Int. Ed., 2011, 50, 1554; F. X. Legrand,
N. Six, C. Slomianny, H. Bricout, S. Tilloy and E. Monflier, Adv.
Synth. Catal., 2011, DOI: 10.1002/adsc.201000917.
6 For examples, see: G. Galaverna, R. Corradini, A. Dossena,
R. Marchelli and G. Vecchio, Electrophoresis, 1997, 18, 905;
T. T. Ong, T. Weihua, W. Muderawan, S. C. Ng and H. Sze On
Chan, Electrophoresis, 2005, 26, 3839; K. Huang, X. Zhang and
D. W. Armstrong, J. Chromatogr., A, 2010, 1217, 5261.
7 R. Breslow and S. Halfon, Proc. Natl. Acad. Sci. U. S. A., 1992, 89,
6916; R. Breslow, S. Halfon and B. Zhang, Tetrahedron, 1995, 51, 377.
8 R. C. Petter, J. S. Salek, C. T. Sikorski, G. Kumaravel and
F. T. Lin, J. Am. Chem. Soc., 1990, 112, 3860.
(d, 1H, 3JH –H = 3.5 Hz, H1), 4.81 (dd, 1H, 3JH –H = 1.5 Hz,
0
1
2
5
6
2
3
JH –H = 13.9 Hz, H6 sub), 4.43 (dd, 1H, JH –H = 1.9 Hz,
0
0
6
6
5
6
2
0
0
JH –H = 13.9 Hz, H6 sub), 4.06–2.96 (m, 103H, N–CH3, H2,
6
6
H3, H4, H5, H6, H6 , Me2, Me3, Me6); 13C NMR (75.49 MHz,
CD2Cl2, 295.1 K): 171.38 (1 ꢀ N–C(Ag)QN), 122.59 (1 ꢀ
CH2–N–CHQCH), 122.31 (1 ꢀ CH3–N–CHQCH), 99.76,
99.73, 99.45, 99.08, 98.98, 98.94, 98.45 (7 ꢀ C1), 84.21,
82.77, 82.72, 82.67, 82.61, 82.51, 82.47, 82.40, 82.36, 82.21,
82.08, 80.83, 80.62, 80.47, 80.36, 80.33, 79.73 (7 ꢀ C2, 7 ꢀ C3,
7 ꢀ C4), 73.12, 72.32, 72.13, 71.90, 71.81, 71.70, 71.63, 71.61,
71.39, 71.25, 71.00 (7 ꢀ C5, 6 ꢀ C6), 62.03, 61.80, 61.70, 61.65,
61.52, 61.41 (6 ꢀ Me6), 59.65, 59.54, 59.50, 59.44, 59.33, 59.19,
59.18, 58.98, 58.90, 58.80, 58.59, 58.44 (7 ꢀ Me2, 7 ꢀ Me3),
53.8 (1 ꢀ C6sub, resonance overlapped by solvent signals),
39.24 (1 ꢀ N–CH3).
0
9 J. A. Faiz, N. Spencer and Z. Pikramenou, Org. Biomol. Chem.,
2005, 3, 4239.
10 L. Leclercq and A. R. Schmitzer, J. Phys. Chem. A, 2008, 112, 4996.
11 T. L. Amyes, S. T. Diver, J. P. Richard, F. M. Rivas and K. Toth,
J. Am. Chem. Soc., 2004, 126, 4366; T. Fahlbusch, M. Frank,
J. Schatz and D. T. Schuhle, J. Org. Chem., 2006, 71, 1688.
12 H. Desvaux, P. Berthault, N. Birlirakis and M. Goldman, J. Magn.
Reson., Ser. A, 1994, 108, 219; H. Desvaux, P. Berthault,
N. Birlirakis, M. Goldman and M. Piotto, J. Magn. Reson., Ser. A,
1995, 113, 47; H. Desvaux and P. Berthault, J. Chim. Phys.
Phys.-Chim. Biol., 1996, 93, 403; H. Desvaux and P. Berthault,
Prog. Nucl. Magn. Reson. Spectrosc., 1999, 35, 295.
13 L. Leclercq and A. R. Schmitzer, J. Phys. Chem. B, 2008, 112, 11064.
14 M. V. Rekharsky and Y. Inoue, Chem. Rev., 1998, 98, 1875.
15 A. J. Arduengo, III, H. V. R. Dias, J. C. Calabrese and
F. Dividson, Organometallics, 1993, 12, 3405.
16 L. C. Moore, S. M. Cooks, M. S. Anderson, H. J. Schanz,
S. T. Griffin, R. D. Rogers, M. C. Kirk and K. H. Shaughnessy,
Organometallics, 2006, 25, 5151.
General procedure for the Suzuki–Miyaura
cross-coupling reaction
The first step was the preparation of the catalytic solutions
under nitrogen using standard Schlenk techniques. In a typical
experiment, Pd(OAc)2 (2.22 ꢀ 10ꢁ2 mmol), 1 (4.44 ꢀ 10ꢁ2 mmol)
and caesium carbonate (6.68 mmol) were dissolved in 10 mL
of deoxygenated 1,4-dioxane and stirred for about one hour at
1250 rpm. Then, after this incubation step, the catalytic
solution was added to degassed bromobenzene (3.34 mmol)
and phenylboronic acid (4.01 mmol). The glass reactor
was then heated at 50 1C, stirred with a magnetic stirrer at
1250 rpm. For kinetic measurements the time corresponding
to the desired temperature was considered as the beginning of
the reaction. The reaction medium was sampled during the
reaction by GC analyses.
17 For reviews, see: N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95,
2457; S. P. Stanforth, Tetrahedron, 1998, 54, 263; A. Suzuki,
J. Organomet. Chem., 1999, 576, 147.
18 Black palladium precipitate is observed after 6 hours of reaction with
one equivalent of 1 explaining the decrease in catalytic activity.
19 For examples, see: W. A. Herrmann, M. Elison, J. Fischer and
C. Kocher, US Pat. 5 663 451, 1997; I. Ozdemir, B. Yigit,
B. Cetinkaya, D. Ulku, M. N. Tahir and C. Arici, J. Organomet.
Chem., 2001, 633, 27; M. T. Zarka, M. Bortenschlager, K. Wurst,
O. Nuyken and R. Weberskirch, Organometallics, 2004, 23, 4817;
D. Schonfelder, O. Nuyken and R. Weberskirch, J. Organomet.
Chem., 2005, 690, 4648; D. Schonfelder, K. Fischer, M. Schmidt,
O. Nuyken and R. Weberskirch, Macromolecules, 2005, 38, 254;
J. P. Gallivan, J. P. Jordan and R. H. Grubbs, Tetrahedron Lett.,
2005, 46, 2577; S. H. Hong and R. H. Grubbs, J. Am. Chem. Soc.,
2006, 128, 3508; J. W. Kim, J. H. Kim, D. H. Lee and Y. S. Lee,
Tetrahedron Lett., 2006, 47, 4745; C. Fleckenstein, S. Roy,
S. Leuthaußer and H. Plenio, Chem. Commun., 2007, 2870;
J. P. Jordan and R. H. Grubbs, Angew. Chem., Int. Ed., 2007,
46, 5152; F. Tewes, A. Schlecker, K. Harms and F. Glorius,
J. Organomet. Chem., 2007, 692, 4593; H. Ohta, T. Fujihara and
Y. Tsuji, Dalton Trans., 2008, 379; M. Meise and R. Haag,
ChemSusChem, 2008, 1, 637; J. Mesnager, P. Lammel,
E. Jeanneau and C. Pinel, Appl. Catal., A, 2009, 368, 22;
J. Mesnager, C. Quettier, A. Lambin, F. Rataboul, A. Perrard
and C. Pinel, Green Chem., 2010, 12, 475; A. Almassy, C. E. Nagy,
A. C. Benyei and F. Joo, Organometallics, 2010, 29, 2484; S. Roy
and H. Plenio, Adv. Synth. Catal., 2010, 352, 1014.
Acknowledgements
One of us (F.-X. L.) is thankful to Drs P. Berthault and
G. Huber (CEA/DSM/IRAMIS/SIS2M/LSDRM) for the
high-resolution NMR facility and to Dr B. Rousseau and
D.-A. Buisson (CEA/DSV/IBITEC-S/SCBM) for the use of
their analytical platform. Roquette Freres (Lestrem, France) is
gratefully acknowledged for generous gifts of b-cyclodextrin.
Notes and references
1 A. Igau, H. Grutzmacher, A. Baceiredo and G. Bertrand, J. Am.
Chem. Soc., 1988, 110, 6463.
2 A. J. Arduengo, R. L. Harlow and M. Kline, J. Am. Chem. Soc.,
1991, 113, 361.
3 S. Leuthausser, D. Schwarz and H. Plenio, Chem.–Eur. J., 2007, 13,
7195; A. Azua, S. Sanz and E. Peris, Organometallics, 2010, 29, 3661.
4 S. Wurtz and F. Glorius, Acc. Chem. Res., 2008, 41, 1523.
20 H. M. J. Wang and I. J. B. Lin, Organometallics, 1998, 17, 972.
c
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011
New J. Chem., 2011, 35, 2061–2065 2065