Crystal Growth & Design
Article
(8) Li, P.; He, Y. B.; Zhao, Y.; Weng, L. H.; Wang, H. L.; Krishna, R.;
Wu, H.; Zhou, W.; OKeeffe, M.; Han, Y.; Chen, B. L. Angew. Chem.,
such framework transformations. The NMR data suggested that
no solvent molecules are included in the MA-2-MeOH and
MA-2-EtOH because of the nonporous nature of the structures
(Figure S4).
́
Int. Ed. 2015, 54, 574−577.
(9) Chen, T.-H.; Popov, I.; Kaveevivitchai, W.; Chuang, Y.-C.; Chen,
̌
́
Y.-S.; Daugulis, O.; Jacobson, A. J.; Miljanic, O. S. Nat. Commun. 2014,
5, 5131 DOI: 10.1038/ncomms6131.
In summary, two hydrogen-bonded organic frameworks
(HOFs) of the melamine (MA), MA-1-H2O and MA-2-DMF,
have been crystallized in H2O and DMF, respectively. The X-
ray crystal structural studies indicate that the formation of
different HOF isomers is attributed to the different hydrogen-
bonded patterns of melamine molecules: structurally, MA-1-
H2O and MA-2-DMF are condensed and porous, respectively.
The porous MA-2-DMF sustains the porous feature under the
solvent exchange by acetone, dichloromethane (CH2Cl2), and
toluene, while it transforms into the condensed state under
methanol (MeOH) and ethanol (EtOH). Furthermore, MA-2-
DMF and MA-2-Toluene can undergo reversible single
crystal−single crystal transformation with retention of the
porous hydrogen-bonded organic frameworks (Scheme 2). We
are working on the construction of even more robust melamine
based HOFs for their recognition of small molecules and their
applications on gas separations.
(10) Lim, S.; Kim, H.; Selvapalam, N.; Kim, K. J.; Cho, S. J.; Seo, G.;
Kim, K. Angew. Chem., Int. Ed. 2008, 47, 3352−3355.
(11) Li, P.; He, Y.; Guang, J.; Weng, L.; Zhao, J. C.-G.; Xiang, S.;
Chen, B. J. Am. Chem. Soc. 2014, 136, 547−549.
(12) Yamamoto, A.; Hirukawa, T.; Hisaki, I.; Miyata, M.; Tohnai, N.
Tetrahedron Lett. 2013, 54, 1268−1273.
(13) Dalapati, S.; Saha, R.; Jana, S.; Patra, A. K.; Bhaumik, A.; Kumar,
S.; Guchhait, N. Angew. Chem., Int. Ed. 2012, 51, 12534−12537.
(14) Cundy, C. S.; Cox, P. A. Microporous Mesoporous Mater. 2005,
82, 1−78.
(15) Chen, B.; Xiang, S.; Qian, G. Acc. Chem. Res. 2010, 43, 1115−
1124.
(16) Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. Chem. Rev. 2012,
112, 1126−1162.
(17) He, Y. B.; Krishna, R.; Chen, B. Energy Environ. Sci. 2012, 5,
9107−9120.
(18) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M.
Science 2013, 341, 974−986.
(19) Mastalerz, M. Chem.Eur. J. 2012, 18, 10082−10091.
(20) Tian, J.; Thallapally, P. K.; McGrail, B. P. CrystEngComm 2012,
14, 1909−1919.
ASSOCIATED CONTENT
■
S
* Supporting Information
(21) Holman, K. T.; Pivovar, A. M.; Swift, J. A.; Ward, M. D. Acc.
Chem. Res. 2001, 34, 107−118.
X-ray crystallographic files (CIF), PDF of check-cif, power X-
ray diffraction analysis (PXRD), and NMR data of MA-1-H2O,
MA-2-DMF MA-2-Toluene, MA-2-Acetone, MA-2-CH2Cl2,
MA-2-MeOH, and MA-2-EtOH. This material is available free
(22) Liu, Y.; Hu, C.; Comotti, A.; Ward, M. D. Science 2011, 333,
436−440.
(23) Comotti, A.; Bracco, S.; Sozzani, P.; Hawxwell, S. M.; Hu, C. H.;
Ward, M. D. Cryst. Growth Des. 2009, 9, 2999−3002.
(24) Xiao, W.; Hu, C.; Ward, M. D. J. Am. Chem. Soc. 2014, 136,
14200−14206.
AUTHOR INFORMATION
■
(25) Saied, O.; Maris, T.; Wuest, J. D. J. Am. Chem. Soc. 2003, 125,
14956−14957.
Corresponding Author
(26) Mastalerz, M.; Oppel, I. M. Angew. Chem., Int. Ed. 2012, 51,
5252−5255.
Notes
(27) Wang, X.; Simard, M.; Wuest, J. D. J. Am. Chem. Soc. 1994, 116,
12119−12120.
The authors declare no competing financial interest.
(28) Simard, M.; Su, D.; Wuest, J. D. J. Am. Chem. Soc. 1991, 113,
4696−4698.
ACKNOWLEDGMENTS
■
(29) Brunet, P.; Simard, M.; Wuest, J. D. J. Am. Chem. Soc. 1997, 119,
2737−2738.
This project was funded by the Deanship of Scientific Research
(DSR), King Abdulaziz University, under grant No. (70-130-
35-HiCi). The authors, therefore, acknowledge technical and
financial support of KAU. This work was also partially
supported by the grant AX-1730 from the Welch Foundation
(B.C.).
(30) Maly, K. E.; Gagnon, E.; Maris, T.; Wuest, J. D. J. Am. Chem.
Soc. 2007, 129, 4306−4322.
(31) Li, P.; Alduhaish, O.; Arman, H. D.; Wang, H. L.; Alfooty, K.;
Chen, B. L. Cryst. Growth Des. 2014, 14, 3634−3638.
(32) Ranganathan, A.; Pedireddi, V. R.; Rao, C. N. R. J. Am. Chem.
Soc. 1999, 121, 1752−1753.
(33) Thomas, R.; Kulkarni, G. U. Beilstein J. Org. Chem. 2007, 3, 17.
(34) McDonald, J. C.; Whitesides, G. M. Chem. Rev. 1994, 94, 2383−
2420.
REFERENCES
■
(1) Lu, J.; Perez-Krap, C.; Suyetin, M.; Alsmail, N. H.; Yan, Y.; Yang,
̈
S.; Lewis, W.; Bichoutskaia, E.; Tang, C. C.; Blake, A. J.; Cao, R.;
(35) Hughes, E. W. J. Am. Chem. Soc. 1941, 63, 1737−1752.
(36) Varghese, J. N.; O’Connell, A. M.; Maslen, E. N. Acta
Crystallogr. 1977, B33, 2102−2108.
Schroder, M. J. Am. Chem. Soc. 2014, 136, 12828−12831.
̈
(2) Luo, X.-Z.; Jia, X.-J.; Deng, J.-H.; Zhong, J.-L.; Liu, H.-J.; Wang,
K.-J.; Zhong, D.-C. J. Am. Chem. Soc. 2013, 135, 11684−11687.
(3) Kim, H.; Kim, Y.; Yoon, M.; Linn, S.; Park, S. M.; Seo, G.; Kim,
K. J. Am. Chem. Soc. 2010, 132, 12200−12202.
(37) Larson, A. C.; Cromer, D. T. J. Chem. Phys. 1974, 60, 185−192.
(4) Yang, W. B.; Greenaway, A.; Lin, X. A.; Matsuda, R.; Blake, A. J.;
Wilson, C.; Lewis, W.; Hubberstey, P.; Kitagawa, S.; Champness, N.
R.; Schroder, M. J. Am. Chem. Soc. 2010, 132, 14457−14469.
(5) Comotti, A.; Fraccarollo, A.; Bracco, S.; Beretta, M.; Distefano,
G.; Cossi, M.; Marchese, L.; Riccardi, C.; Sozzani, P. CrystEngComm
2013, 15, 1503−1507.
(6) He, Y.; Xiang, S.; Chen, B. J. Am. Chem. Soc. 2011, 133, 14570−
14573.
(7) Li, P.; He, Y. B.; Arman, H. D.; Krishna, R.; Wang, H. L.; Weng,
L. H.; Chen, B. L. Chem. Commun. 2014, 50, 13081−13084.
E
Cryst. Growth Des. XXXX, XXX, XXX−XXX