Organic Letters
Letter
(3) Gushwa, N. N.; Kang, S.; Chen, J.; Taunton, J. J. Am. Chem. Soc.
2012, 134, 20214−20217.
Scheme 3. Synthesis of Alkyne Probes 15 and 17
(4) Cohen, M. S.; Hadjivassiliou, H.; Taunton, J. Nat. Chem. Biol. 2007,
3, 156−160.
(5) (a) Bottcher, T.; Sieber, S. A. J. Am. Chem. Soc. 2010, 132, 6964−
̈
6972. (b) Kalesh, K. A.; Sim, D. S. B.; Wang, J.; Liu, K.; Lin, Q.; Yao, S.
Q. Chem. Commun. 2010, 46, 1118−1120. (c) Krysiak, J. M.; Kreuzer, J.;
Macheroux, P.; Hermetter, A.; Sieber, S. A.; Breinbauer, R. Angew.
Chem., Int. Ed. 2012, 51, 7035−7040. (d) Kreuzer, J.; Bach, N. C.; Forler,
D.; Sieber, S. A. Chem. Sci. 2015, 6, 237−245.
(6) 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide.
(7) Wirth, T.; Pestel, G. F.; Ganal, V.; Kirmeier, T.; Schuberth, I.; Rein,
T.; Tietze, L. F.; Sieber, S. A. Angew. Chem., Int. Ed. 2013, 52, 6921−
6925.
(8) For a C−H functionalization strategy, see: Li, J.; Cisar, J. S.; Zhou,
C.-Y.; Vera, B.; Williams, H.; Rodríguez, A. D.; Cravatt, B. F.; Romo, D.
Nat. Chem. 2013, 5, 510−517.
a practice atypical for the Nicholas reaction. A number of
functional groups acted as the nucleophilic species, including
hydroxyl, sulfhydryl, carboxyl, and amino groups. For substrates
that react slower than the competing dimerization of 6a, use of
6b improved yields. Propargylation of amino groups required the
preparation of propargylium tetrafluoroborate salts. Mono- and
dialkynylation of a primary amino group was achieved selectively
depending on the steric nature of the propargylium ion. Bz, Cbz,
Ac, and Fmoc amine protecting groups were all tolerated. Finally,
these conditions provided an alternative propargylation strategy
for base-sensitive sesquiterpene analogues.
(9) For selected reviews on ABPP, see: (a) Cravatt, B. F.; Wright, A. T.;
Kozarich, J. W. Annu. Rev. Biochem. 2008, 77, 383−414. (b) Nodwell, M.
B.; Sieber, S. A. ABPP Methodology: Introduction and Overview. In
Activity-Based Protein Profiling; Sieber, S. A., Ed.; Springer: Berlin, 2012;
Vol. 324, pp 1−41. (c) Willems, L. I.; Overkleeft, H. S.; van Kasteren, S.
I. Bioconjugate Chem. 2014, 25, 1181−1191. (d) Yang, P.; Liu, K.
ChemBioChem 2015, 16, 712−724.
(10) (a) Bottcher, T.; Pitscheider, M.; Sieber, S. A. Angew. Chem., Int.
̈
Ed. 2010, 49, 2680−2698. (b) Su, Y.; Ge, J.; Zhu, B.; Zheng, Y.-G.; Zhu,
Q.; Yao, S. Q. Curr. Opin. Chem. Biol. 2013, 17, 768−775.
(11) (a) Ettmayer, P.; Amidon, G. L.; Clement, B.; Testa, B. J. Med.
Chem. 2004, 47, 2393−2404. (b) Li, B.; Sedlacek, M.; Manoharan, I.;
Boopathy, R.; Duysen, E. G.; Masson, P.; Lockridge, O. Biochem.
Pharmacol. 2005, 70, 1673−1684.
ASSOCIATED CONTENT
* Supporting Information
■
(12) (a) Lockwood, R. F.; Nicholas, K. M. Tetrahedron Lett. 1977, 18,
4163−4165. For reviews on the Nicholas reaction, see: (b) Nicholas, K.
M. Acc. Chem. Res. 1987, 20, 207−214. (c) Teobald, B. J. Tetrahedron
2002, 58, 4133−4170. (d) Díaz, D. D.; Betancort, J. M.; Martín, V. S.
Synlett 2007, 2007, 343−359.
(13) (a) Díaz, D. D.; Martín, V. S. Tetrahedron Lett. 2000, 41, 9993−
9996. (b) Hope-Weeks, L. J.; Mays, M. J.; Solan, G. A. Eur. J. Inorg. Chem.
2007, 2007, 3101−3114. (c) Ortega, N.; Martín, V. S.; Martín, T. J. Org.
Chem. 2010, 75, 6660−6672.
(14) Reactions at −40 and −10 °C afforded 7 in 23 and 38% yield,
respectively.
S
The Supporting Information is available free of charge on the
1
Full experimental details, characterization data, and H
and 13C NMR spectra (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
Notes
(15) Hayashi, Y.; Yamaguchi, H.; Toyoshima, M.; Okado, K.; Toyo, T.;
Shoji, M. Chem. - Eur. J. 2010, 16, 10150−10159.
(16) Ahmad Fuaad, A.; Azmi, F.; Skwarczynski, M.; Toth, I. Molecules
2013, 18, 13148−13174.
The authors declare no competing financial interest.
(17) Struthers, H.; Spingler, B.; Mindt, T. L.; Schibli, R. Chem. - Eur. J.
2008, 14, 6173−6183.
ACKNOWLEDGMENTS
■
(18) (a) Hope-Weeks, L. J.; Mays, M. J.; Woods, A. D. J. Chem. Soc.,
We acknowledge the NIH (R21-CA194661 to D.A.H. and R01-
GM054161 to K.M.B.) and the Department of Defense
(PC141033 to D.A.H.) for funding. Mass spectrometry
performed at the University of Minnesota was conducted at
the Masonic Cancer Center Analytical Biochemistry Core
Facility, which is supported by the National Institute of Health
(P30-CA77598).
Dalton Trans. 2002, 1812−1819. (b) Hagendorn, T.; Brase, S. RSC Adv.
̈
2014, 4, 15493−15495.
(19) Evans, E. F.; Lewis, N. J.; Kapfer, I.; Macdonald, G.; Taylor, R. J. K.
Synth. Commun. 1997, 27, 1819−1825.
(20) Amouri, H.; Beg
́
ue,
́
J.-P.; Chennoufi, A.; Bonnet-Delpon, D.;
Gruselle, M.; Malez
́
ieux, B. Org. Lett. 2000, 2, 807−809.
(21) Shea, K. M.; Closser, K. D.; Quintal, M. M. J. Org. Chem. 2005, 70,
9088−9091.
(22) Wen, B.; Hexum, J. K.; Widen, J. C.; Harki, D. A.; Brummond, K.
M. Org. Lett. 2013, 15, 2644−2647.
REFERENCES
■
(1) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596−2599. (b) Meldal, M.; Tornøe, C.
W. Chem. Rev. 2008, 108, 2952−3015. (c) Sletten, E. M.; Bertozzi, C. R.
Angew. Chem., Int. Ed. 2009, 48, 6974−6998. (d) Tang, W.; Becker, M.
L. Chem. Soc. Rev. 2014, 43, 7013−7039. (e) Martell, J.; Weerapana, E.
Molecules 2014, 19, 1378−1393. (f) Tiwari, V. K.; Mishra, B. B.; Mishra,
K. B.; Mishra, N.; Singh, A. S.; Chen, X. Chem. Rev. 2016, 116, 3086−
3240.
(23) (a) Macías, F. A.; Galindo, J. C. G.; Massanet, G. M.
Phytochemistry 1992, 31, 1969−1977. (b) Nasim, S.; Pei, S.; Hagen, F.
K.; Jordan, C. T.; Crooks, P. A. Bioorg. Med. Chem. 2011, 19, 1515−
1519.
(24) (a) Kwok, B. H. B.; Koh, B.; Ndubuisi, M. I.; Elofsson, M.; Crews,
C. M. Chem. Biol. 2001, 8, 759−766. (b) Janganati, V.; Penthala, N. R.;
Madadi, N. R.; Chen, Z.; Crooks, P. A. Bioorg. Med. Chem. Lett. 2014, 24,
3499−3502.
(25) Attempts to manipulate the allylic alcohol of 17 included use of
PCC, PDC, Dess−Martin periodinane, and PBr3.
(2) (a) Johansson, H.; Pedersen, D. S. Eur. J. Org. Chem. 2012, 2012,
4267−4281. (b) Lehmann, J.; Wright, M. H.; Sieber, S. A. Chem. - Eur. J.
2016, 22, 4666−4678.
D
Org. Lett. XXXX, XXX, XXX−XXX