References
[1] American Cancer Society, Cancer Facts and Figures 2017, Genes Dev. 21 (2017) 2525–
2538. doi:10.1101/gad.1593107.
[2] M.A. Pierotti, T. Negri, E. Tamborini, F. Perrone, S. Pricl, S. Pilotti, Targeted Therapies:
The
Rare
Cancer
Paradigm,
Mol.
Oncol.
4
(2010)
19–37.
doi:10.1016/j.molonc.2009.10.003.
[3] M. Malumbres, R. Sotillo, D. Santamaría, J. Galán, A. Cerezo, S. Ortega, P. Dubus, M.
Barbacid, Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and
Cdk6, Cell. 118 (2004) 493–504. doi:10.1016/j.cell.2004.08.002.
[4] C. Berthet, E. Aleem, V. Coppola, L. Tessarollo, P. Kaldis, Cdk2 Knockout Mice Are
Viable, Curr. Biol. 13 (2003) 1775–1785. doi:10.1016/j.cub.2003.09.024.
[5] H. Shao, S. Shi, S. Huang, A.J. Hole, A.Y. Abbas, S. Baumli, X. Liu, F. Lam, D.W. Foley,
P.M. Fischer, M. Noble, J.A. Endicott, C. Pepper, S. Wang, Substituted 4-(thiazol-5-yl)-2-
(phenylamino)pyrimidines are highly active CDK9 inhibitors: Synthesis, X-ray crystal
structures, structure-activity relationship, and anticancer activities, J. Med. Chem. 56
(2013) 640–659. doi:10.1021/jm301475f.
[6] U. Asghar, A.K. Witkiewicz, N.C. Turner, E.S. Knudsen, The history and future of
targeting cyclin-dependent kinases in cancer therapy, Nat. Rev. Drug Discov. 14 (2015)
130–146. doi:10.1038/nrd4504.
[7] B.S.B. and V.R.A. Jain S. K., Cyclin-Dependent Kinase Inhibition by Flavoalkaloids,
Mini-Reviews Med. Chem. 12 (2012) 632–649. doi:doi 10.2174/138955712800626683.
[8] Y.A. Sonawane, M.A. Taylor, J.V. Napoleon, S. Rana, J.I. Contreras, A. Natarajan, Cyclin
Dependent Kinase 9 Inhibitors for Cancer Therapy, J. Med. Chem. 59 (2016) 8667–8684.
doi:10.1021/acs.jmedchem.6b00150.
[9] T. Yin, M.J. Lallena, E.L. Kreklau, K.R. Fales, S. Carballares, R. Torrres, G.N. Wishart,
R.T. Ajamie, D.M. Cronier, P.W. Iversen, T.I. Meier, R.T. Foreman, D. Zeckner, S.E.
Sissons, B.W. Halstead, A.B. Lin, G.P. Donoho, Y. Qian, S. Li, S. Wu, A. Aggarwal, X.S.
Ye, J.J. Starling, R.B. Gaynor, A. de Dios, J. Du, A Novel CDK9 Inhibitor Shows Potent
Antitumor Efficacy in Preclinical Hematologic Tumor Models, Mol. Cancer Ther. 13
(2014) 1442–1456. doi:10.1158/1535-7163.MCT-13-0849.
[10] J. Flynn, J. Jones, A.J. Johnson, L. Andritsos, K. Maddocks, S. Jaglowski, J. Hessler,
M.R. Grever, E. Im, H. Zhou, Y. Zhu, D. Zhang, K. Small, R. Bannerji, J.C. Byrd,
Dinaciclib is a novel cyclin-dependent kinase inhibitor with significant clinical activity in
relapsed and refractory chronic lymphocytic leukemia, Leukemia. 29 (2015) 1524–1529.
doi:10.1038/leu.2015.31.
[11] A. Abdul-Aziz, F. Burrows, N. Yu, N.H. Russell, C.H. Seedhouse, M. Pallis, Abstract
4536: ABT-737 and ABT-199 complement the multikinase inhibitor TG02 to induce
apoptosis in acute myeloid leukemia cells, Cancer Res. 74 (2014) 4536 LP-4536.
[12] S. Baumli, A.J. Hole, M.E.M. Noble, J.A. Endicott, The CDK9 C-helix exhibits
conformational plasticity that may explain the selectivity of CAN508, ACS Chem. Biol. 7
(2012) 811–816. doi:10.1021/cb2004516.
[13] P.M. Lukasik, S. Elabar, F. Lam, H. Shao, X. Liu, A.Y. Abbas, S. Wang, Synthesis and
biological evaluation of imidazo[4,5-b]pyridine and 4-heteroaryl-pyrimidine derivatives as
anti-cancer
agents,
Eur.
J.
Med.
Chem.
57
(2012)
311–322.
doi:10.1016/j.ejmech.2012.09.034.
24