10.1002/anie.202104111
Angewandte Chemie International Edition
RESEARCH ARTICLE
complex. On the other hand, energy-minimized DFT calculations
were performed to study the driving forces of host-guest binding
within the chiral microenvironments of H-1 and H-3.[28] We chose
D/L-valinol as guests in terms of the greatest difference on EF
values for H-1 and H-3 (1.67 vs 5.37). The conformation and
binding energies of both enantiomers were evaluated by
inserting -H-1 and -H-3 and performing energy
minimization for the host−guest structures. As shown in Figure 7,
the optimized structures showed that there have several host-
guest interactions including hydrogen bonds (OH···N or OH···O)
(2.2 ~ 2.8 Å) as well as π···π and CH···π interactions (3.0 ~ 4.0
Å). For the host-guest complexes D-valinol@-H-1, L-
valinol@-H-1, D-valinol@-H-3, and L-valinol@-H-3, the
binding energies were calculated to be -19.76, -17.46 -23.68 and
-20.64 kcal mol-1, respectively. The negative values of binding
energies suggest that the hollow helicates are avaliable to
encapsulate the enantiomers. Furthermore, the binding energies
for D-valinol were more negative to that for L-valinol in both
helicates, indicating a stronger host-guest interaction of -H-1
and -H-3 with D-valinol than L-valinol which result in
enantioselective recognition. In particular, the anthracene
groups within -H-3 can provide more hydrophobic surface for
binding guest molecules, thus giving rise to a stronger host-
guest interaction (-23.68 vs -19.76 kcal mol-1) (Figure 7a and 7c).
The theoretical calculations are well consistent with the
experimental results, unambiguously revealing the critical
importance of the chiral microenviroments for chiral recognition.
Acknowledgements
This work was financially supported by the National Science
Foundation of China (Grant Nos. 91956124, 21875136,
21901164, 21620102001 and 91856204), the National KeyBasic
Research Program of China (2016YFA0203400), Key Project of
Basic Research of Shanghai (18JC1413200 and 19JC1412600),
Shanghai Sailing Program (19YF1436100) and Shanghai
Chenguang Project (18CG48).
Conflict of interest
The authors declare no conflict of interest.
Keywords: Helicates • Coordination complexes • Self-assembly
• Chiral microenvironments • Enantioselective recognition
[1]
a) E. Yashima, N. Ousaka, D. Taura, K. Shimomura, T. Ikai, K. Maeda,
Chem. Rev. 2016, 116, 13752–13990; b) D. N. Woolfson, E. G. Baker, G. J.
Bartlett, Science 2017, 357, 133–134.
[2]
[3]
J. D. Watson, F. H. C. Crick, Nature 1953, 171, 737–738.
D. R. Walker, S. A. H. Hulgan, C. M. Peterson, I. C. Li, K. J. Gonzalez,
J. D. Hartgerink, Nat. Chem. 2021, 13, 260–269.
[4] A. R. Thomson, C. W. Wood, A. J. Burton, G. J. Bartlett, R. B. Sessions,
R. L. Brady, D. N. Woolfson, Science 2014, 346, 485–488.
[5]
X. Li, S. Chen, W.-D. Zhang, H. G. Hu, Chem. Rev. 2020, 120, 10079–
10144.
[6]
E. Yashima, K. Maeda, Macromolecules 2008, 41, 3–12.
Conclusion
[7]
M. Frenkel-Pinter, M. Samanta, G. Ashkenasy, L. J. Leman, Chem. Rev.
2020, 120, 4707–4765.
We have developed a new system for construction of structurally
[8]
O. Livnah, E. A. Bayer, M. Wilchek, J. L. Sussman, Proc. Natl. Acad.
well-defined
helicates
with
fine-tuning
of
chiral
Sci. USA 1993, 90, 5076–5080.
microenvironments. The use of axially chiral 1,1′-biphenyl-type
ligands, Zn (II), and 2-formylpyridine to form a group of triple-
[9]
J. Dong, Y. Liu, Y. Cui, Acc. Chem. Res. 2021, 54, 194–206.
[10] a) J. M. Lehn, A. Rigault, J. Siegel, J. Harrowfield, B. Chevrier, D.
Moras, Proc. Natl. Acad. Sci. USA 1987, 84, 2565–2569; b) U. Koert, M. M.
Harding, J.-M. Lehn, Nature 1990, 346, 339–342.
stranded ZnII L3 helicates. These complexes are well
2
characterized by Single-crystal X-ray diffraction, 1H NMR, Q-
TOF-MS, and CD spectra. Specifically, we find that the
molecular helicity of the helicates can be tuned by the absolute
configurations of the two metal centers with homoconfiguration
() or mesomeric configuration (), depending critically on the
bulky groups and length of the spacers. Furthermore, the
powerful coordination self-assembly allow us to finely tune the
resulting chiral microenvironments of the helicates involving
cavity sizes, chiral binding sites, and hydrophobic effect through
the deployment of pre-designed chiral ligands. It has been
suggested that such structural tunability can greatly enhance the
host-guest binding affinities and chiral recognition ability. The
present helicate H-3, which has suitable cavity size, rich chiral
binding sites, and high-density hydrophobic surfaces, possesses
exceptional enantioselectivities for a varity of chiral amino
alcohols. This work thus reveals the chiral recognition
performance of host materials are highly dependent on the
subtly chiral microenvironments, which could facilitate the design
of other cavity-containing chiral materials with outstanding
enantioselective processes.
[11] C. Piguet, G. Bernardinelli, G. Hopfgartner, Chem. Rev. 1997, 97,
2005–2062.
[12] a) V. E. Campbell, X. de Hatten, N. Delsuc, B. Kauffmann, I. Huc, J. R.
Nitschke, Nat. Chem. 2010, 2, 684–687; b) K. Miwa, Y. Furusho, E. Yashima,
Nat. Chem. 2010, 2, 444–449; c) D. Zhao, T. van Leeuwen, J. Cheng, B. L.
Feringa, Nat. Chem. 2017, 9, 250–256; d) J. F. Ayme, J. M. Lehn, C. Bailly, L.
Karmazin, J. Am. Chem. Soc. 2020, 142, 5819–5824; e) N. Ousaka, M.
Itakura, A. Nagasaka, M. Ito, T. Hattori, D. Taura, T. Ikai, E. Yashima, J. Am.
Chem. Soc. 2021, 143, 4346–4358; f) J. L. Greenfield, E. W. Evans, D. Di
Nuzzo, M. Di Antonio, R. H. Friend, J. R. Nitschke, J. Am. Chem. Soc. 2018,
140, 10344–10353; g) S. J. Allison, D. Cooke, F. S. Davidson, P. I. P. Elliott, R.
A. Faulkner, H. B. S. Griffiths, O. J. Harper, O. Hussain, P. J. Owen-Lynch, R.
M. Phillips, C. R. Rice, S. L. Shepherd, R. T. Wheelhouse, Angew. Chem. Int.
Ed. 2018, 57, 9799–9804; Angew.Chem. 2018, 130, 9947–9952; h) Y. Suzuki,
T. Nakamura, H. Iida, N. Ousaka, E. Yashima, J. Am. Chem. Soc. 2016, 138,
4852–4859.
[13] a) J. Hamacek, S. Blanc, M. Elhabiri, E. Leize, A. Van Dorsselaer, C.
Piguet, A.-M. Albrecht-Gary, J. Am. Chem. Soc. 2003, 125, 1541–1550; b) L.
Aboshyan-Sorgho, H. Nozary, A. Aebischer, J. C. G. Bünzli, P. Y. Morgantini,
K. R. Kittilstved, A. Hauser, S. V. Eliseeva, S. Petoud, C. Piguet, J. Am. Chem.
Soc. 2012, 134, 12675–12684; c) F. Li, J. K. Clegg, L. F. Lindoy, R. B.
This article is protected by copyright. All rights reserved.