10.1002/anie.202003042
Angewandte Chemie International Edition
RESEARCH ARTICLE
excitons are transferred to acetone, indirectly exciting the
acetone component in the system. This understanding is based
on the following two facts: (i) the robust EEA in PCN yields a
considerable amount of hot excitons with suitable energy level
matching that of acetone, and (ii) the sub-picosecond build-up
time (~0.3 ps, linked to the internal conversion of hot excitons)
enables feasible hot exciton-involved energy transfer from PCN
to acetone prior to the relaxation to the lowest excitonic states
(refer to E1 in the scheme). This finding confirmed the feasibility
of using ketones as co-catalysts to PCN in optimizing the visible-
light-driven, exciton-involved photocatalysis. It should be pointed
out that the hot-exciton (generated via direct excitation or EEA)
transfer from PCN to acetone also exists under UV-light (below
325 nm) excitation. However, the simultaneous but dominant
excitation of acetone enables energy transfer from acetone to
PCN, prevailing over the hot-exciton transfer from PCN to
acetone.
This work was supported by the National Key R&D Program of
China (2017YFA0207301, 2017YFA0303500, 2019YFA0210004,
2018YFA0208702), the National Natural Science Foundation of
China (21922509, 21905262, 21890754, 61705133, 21633007,
21803067, 91950207), the Youth Innovation Promotion
Association of CAS (2017493), the Young Elite Scientist
Sponsorship Program by CAST, the Key Research Program of
Frontier Sciences (QYZDY-SSW-SLH011), and the Anhui
Initiative in Quantum Information Technologies (AHY090200).
The authors thank Dr. Kuai Yu (College of Electronic Science
and Technology, Shenzhen University) for his helpful suggestion
on spectroscopic analyses.
Keywords: co-catalysts • exciton • energy transfer • singlet
oxygen
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
I. Ghosh, J. Khamrai, A. Savateev, N. Shlapakov, M. Antonietti, B.
König, Science 2019, 365, 360–366.
D. Friedmann, A. Hakki, H. Kim, W. Choic, D. Bahnemann, Green
Chem. 2016, 18, 5391–5411.
N. J. Hestand, R. V. Kazantsev, A. S. Weingarten, L. C. Palmer, S. I.
Stupp, F. C. Spano, J. Am. Chem. Soc. 2016, 138, 11762–11774.
M. Z. Rahman, C. W. Kwong, K. Davey, S. Z. Qiao, Energy Environ. Sci.
2016, 9, 709–728.
M. Z. Rahman, K. Davey, S. Qiao, J. Mater. Chem. A 2018, 6, 1305–
1322.
L. Zhang, J. Ran, S.-Z. Qiao, M. Jaroniec, Chem. Soc. Rev. 2019, 48,
5184–5206.
C. Mongin, S. Garakyaraghi, N. Razgoniaeva, M. Zamkov, F. N.
Castellano, Science 2016, 351, 369–372.
Figure 4. Photocatalytic mechanism investigations. (a) Wavelength-dependent
photocatalytic oxidative coupling of benzylamine, where the dashed black line
is the UV-vis spectrum of PCN. (b) Schematic illustration of hot-exciton-
involved energy transfer in PCN/acetone (mediated by EEA) under visible light
illumination, where GS and IC denote ground state and internal conversion,
respectively.
T. R. Blum, Z. D. Miller, D. M. Bates, I. A. Guzei, T. P. Yoon, Science
2016, 354, 1391–1395.
M. C. DeRosa, R. J. Crutchley, Coord. Chem. Rev. 2002, 233–234,
351–371.
[10] Y. Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, G. R. Fleming,
Phys. Rev. Lett. 2005, 94, 157402.
[11] H. Wang, S. Jiang, S. Chen, X. Zhang, W. Shao, X. Sun, Z. Zhao, Q.
Zhang, Y. Luo, Y. Xie, Chem. Sci. 2017, 8, 4087–4092.
[12] H. Wang, S. Jiang, S. Chen, D. Li, X. Zhang, W. Shao, X. Sun, J. Xie, Z.
Zhao, Q. Zhang, Y. Tian, Y. Xie, Adv. Mater. 2016, 28, 6940–6945.
[13] O. Bolton, K. Lee, H. J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3,
205–210.
Conclusion
In conclusion, we here propose that ketones can serve as
molecular co-catalysts for synergistically promoting spin
relaxation and suppressing nonradiative energy losses in
semiconductor-based photocatalysts. By taking polymeric
carbon nitride (PCN)/acetone as a prototypical system, we
demonstrate that the extrinsic introduction of ketones can lead to
promoted triplet exciton accumulation and extended visible light
response. According to spectroscopic investigations, we
attribute such optimizations to two types of exciton-involved
energy transfers between PCN and ketones. That is, the energy
transfer of exciton–exciton annihilation-induced hot excitons
from PCN to acetone and the energy transfer of molecular
ketone triplets (whose formation is due to the high intersystem
crossing efficiency) to PCN. Owing to these features, the
PCN/ketone systems exhibit significantly optimized performance
in exciton-involved photocatalytic reactions like singlet oxygen
generation. This work brings an in-depth understanding of
exciton-involved photocatalysis, and presents a prototypical
model for pursing optimized solar energy utilization through
introducing extrinsic molecular co-catalysts.
[14] M. S. Kwon, D. Lee, S. Seo, J. Jung, J. Kim, Angew. Chem. Int. Ed.
2014, 53, 11177–11181.
[15] X. Ma, C. Xu, J. Wang, H. Tian, Angew. Chem. Int. Ed. 2018, 57,
10854–10858.
[16] Y. Hoshi, T. Kuroda, M. Okada, R. Moriya, S. Masubuchi, K. Watanabe,
T. Taniguchi, R. Kitaura, T. Machida, Phys. Rev. B: Condens. Matter
Mater. Phys. 2017, 95, 241403.
[17] Y. Lee, G. Ghimire, S. Roy, Y. Kim, C. Seo, A. K. Sood, J. I. Jang, J.
Kim, ACS Photonics 2018, 5, 2904–2911.
[18] R. Tempelaar, T. L. C. Jansen, J. Knoester, J. Phys. Chem. Lett. 2017,
8, 6113–6117.
[19] L. Yuan, L. Huang, Nanoscale 2015, 7, 7402–7408.
[20] M. Tabachnyk, B. Ehrler, S. Gelinas, M. L. Bohm, B. J. Walker, K. P.
Musselman, N. C. Greenham, R. H. Friend, A. Rao, Nat. Mater. 2014,
13, 1033–1038.
[21] R. Younts, H. S. Duan, B. Gautam, B. Saparov, J. Liu, C. Mongin, F. N.
Castellano, D. B. Mitzi, K. Gundogdu, Adv. Mater. 2017, 29, 1604278.
[22] W. L. Chan, J. R. Tritsch, X. Y. Zhu, J. Am. Chem. Soc. 2012, 134,
18295–18302.
[23] X. Li, Z. Huang, R. Zavala, M. L. Tang, J. Phys. Chem. Lett. 2016, 7,
1955–1959.
[24] M. P. O'Sullivan, A. C. Testa, J. Am. Chem. Soc. 1970, 92, 5842–5844.
[25] Haas, Y. Photobiol. Sci. 2004, 3, 6–16.
Acknowledgements
[26] R. F. Borkman, D. R. Kearns, J. Chem. Phys. 1966, 44, 945–949.
6
This article is protected by copyright. All rights reserved.