solid-state structures and luminescence of the Cu(I) aggregates
will be studied further.
This work is supported by the NSF of China (Grant
20572096) and the Zhejiang Provincial Natural Science Founda-
tion (R405066).
Notes and references
¯
˚
¶ Crsytal data for 1: C55H50Cu8N20O, triclinic, P1, a = 11.901(2) A, b =
◦
˚
˚
14.426(2) A, c = 18.410(2) A, a = 80.163(2), b = 73.035(2), c = 70.652(2) ,
V = 2842.8(7) A , Z = 2, Dcalc = 1.770 Mg m−3, 14775 reflections collected,
3
˚
9836 reflections independent [Rint = 0.0285], goodness-of-fit on F2 1.021,
R [I > 2rI]: 0.0484, 0.1055. For 2: C92H60Cu8N20, orthorhombic, Fdd2,
3
˚
˚
˚
˚
a = 23.916(15) A, b = 39.80(3) A, c = 16.666(10) A, V = 15864(18) A ,
Z = 8, Dcalc = 1.636 Mg m−3, 18203 reflections collected, 3664 reflections
independent [Rint = 0.1065], goodness-of-fit on F2 0.906, R [I > 2rI]:
0.0769, 0.1827.
1 (a) P. Pyykko, Chem. Rev., 1997, 97, 597; (b) E. J. Fernandez, J. M.
Lo´pez de Luzuriaga, M. Monge, M. E. Olmos, J. Perez, A. Laguna,
A. A. Mohamed and J. P. Jr. Fackler, J. Am. Chem. Soc., 2003, 125,
2022.
Fig. 3 The solid-state emission (right) and excitation (left) spectra of 1
and 2.
2 (a) A. Kishimura, T. Yamashita and T. Aida, J. Am. Chem. Soc., 2005,
127, 179; (b) Q.-M. Wang, Y.-A. Lee, O. Crespo, J. Deaton, C. Tang, H. J.
Gysling, M. C. Gimeno, C. Larraz, M. D. Villacampa, A. Laguna and
R. Eisenberg, J. Am. Chem. Soc., 2004, 126, 9488; (c) T. Grimes, M. A.
Omary, H. V. R. Dias and T. R. Cundari, J. Phys. Chem. A, 2006, 110,
5823; (d) M. A. Omary, M. A Rawashdeh-Omary, M. W. A. Gonser, O.
Elbjeirami, T. Grimes, T. R. Cundari, H. V. K. Diyabalanage, C. S. P.
Gamage and H. V. R. Dias, Inorg. Chem., 2005, 44, 8200.
3 (a) H. V. R. Dias, C. S. P. Gamage, J. Keltner, H. V. K. Diyabalanage,
I. Omari, Y. Eyobo, N. R. Dias, N. Roehr, L. McKinney and T. Poth,
Inorg. Chem., 2007, 46, 2979; (b) H. V. R. Dias, H. V. K. Diyabalanage,
M. G. Eldabaja, O. Elbjeirami, M. A. Rawashdeh-Omary and M. A.
Omary, J. Am. Chem. Soc., 2005, 127, 7489; (c) H. V. R. Dias and
C. S. P. Gamage, Angew. Chem., Int. Ed., 2007, 46, 2192; (d) H. V. R.
Dias, H. V. K. Diyabalanage and C. S. P. Gamage, Chem. Commun.,
2005, 1619; (e) A. A. Mohamed, J. M. Lo´pez-de-Luzuriaga and J. P.
Fackler, Jr., J. Cluster Sci., 2003, 14, 61; (f) A. A. Mohamed, A. Burini
and J. P. Fackler, Jr., J. Am. Chem. Soc., 2005, 127, 5012; (g) A. A.
Mohamed, L. M. Pe´rez and J. P. Fackler, Jr., Inorg. Chim. Acta, 2005, 358,
1657.
spectra of 1 and 2 display unusual multiple bands (407 sh, 440,
454, 470, 484, 497 and 511 nm for 1 and 409 sh, 443, 455, 473,
486, 498 and 517 nm for 2) with kmax = 470 nm and 517 nm upon
excitation at 220 nm, respectively. Vibronically structured bands
with a spacing between the local maxima of the emission bands of
about 1446 cm−1 for 1 and about 1432 cm−1 for 2, characteristic
3e
=
=
of the m(C N) or m(N N) stretch, were also observed. The
appearance of this structure is suggestive of involvement of the
pyrazolate ligands in the emission process.
The photophysical properties of trinuclear Cu(I) clusters2d,3b
have been fully investigated. However, little attention has so
far been focused on the photophysical properties of copper(I)
complexes with a larger cluster core structure. Because emission
bands greater than 400 nm were not observed for the ligands,
the low-energy emission bands centered at ca. 470 nm for the
complexes may tentatively be assigned to Cu–Cu bonded excited
states. The Cu8 complexes exhibit emission bands at almost the
same positions, suggest that these emissions probably originate
from the same electronic states assignable to ligand-to-ligand
charge transfer and MLCT (d–p) transitions. The low-energy
bands around 511 nm for 1 and 517 for 2 may be attributed to
metal-centered charge transfer processes. In CH2Cl2, complexes
1 and 2 are also luminescent. The spectra show broad bands
centered at ca. 465 nm with not well-resolved vibronic features
upon excitation at 227 nm. The large Stokes shifts and the spectral
features again demonstrate that the low-energy emissions of the
complexes originate from the metal-centered excitation states.
In summary, we have demonstrated the synthesis, structures,
and emission properties of two Cu8 clusters featuring eleven Cu–
Cu bonds and twisted-boat Cu8 cores representing the first oc-
tanuclear copper(I) complexes supported by N-donating ligands.
They are stable in the solid state as well as in solution. The
emission spectra of these compounds are interesting and worthy of
further investigation. Variation of the pyrazolyl ring substituents
and bridges between the two pyrazolyl rings may lead to novel
aggregates with different nuclearities. The ligand effect on the
4 (a) J.-P. Zhang, S. Horike and S. Kitagawa, Angew. Chem., Int. Ed.,
2007, 46, 889; (b) J. He, Y.-G. Yin, T. Wu, D. Li and X.-C. Huang, Chem.
Commun., 2006, 2845.
5 (a) F. Liu, W. Chen and D. Wang, Dalton Trans., 2006, 3445; (b) W.
Chen, F. Liu, K. Matsumoto, J. Autschbach, B. Le Guennic, T. Ziegler,
M. Maliarik and J. Glaser, Inorg. Chem., 2006, 45, 4526; (c) W. Chen, F.
Liu, D. Xu, K. Matsumoto, S. Kishi and M. Kato, Inorg. Chem., 2006,
45, 5552; (d) F. Liu, W. Chen and D. Wang, Dalton Trans., 2006, 3445;
(e) Y. Zhou and W. Chen, Organometallics, 2007, 26, 2742; (f) B. Liu, W.
Chen and S. Jin, Organometallics, 2007, 26, 3660.
6 A. Bondi, J. Phys. Chem., 1964, 68, 441.
7 (a) T. Sugiura, H. Yoshikawa and K. Awaga, Inorg. Chem., 2006, 45,
7584; (b) X.-M. Zhang, Z.-M. Hao and H.-S. Wu, Inorg. Chem., 2005,
44, 7301; (c) K. Singh, J. R. Long and P. Stavropoulos, J. Am. Chem.
Soc., 1997, 119, 2942; (d) K. Singh, J. R. Long and P. Stavropoulos,
Inorg. Chem., 1998, 37, 1079; (e) M. A. Carvajal, S. Alvarez and J. J.
Novoa, Chem.–Eur. J., 2004, 10, 2117.
8 C.-M. Che, Z. Mao, V. M. Miskowski, M.-C. Tse, C.-K. Chan, K.-K.
Cheung, D. L. Phillips and K.-H. Leung, Angew. Chem., Int. Ed., 2000,
39, 4084.
9 (a) C. W. Liu, C. M. Hung, B. K. Santra, H. C. Chen, H. H. Hsueh and
J. C. Wang, Inorg. Chem., 2003, 42, 3216; (b) C. W. Liu, H.-C. Chen,
J.-C. Wang and T.-C. Keng, Chem. Commun., 1998, 1831; (c) C. W. Liu,
T. Stubbs, R. J. Staples and J. P. Fackler, J. Am. Chem. Soc., 1995, 117,
9778; (d) J. P. Fackler, Inorg. Chem., 2002, 41, 6959; (e) G. F. Manbeck,
A. J. Lipman, R. A. Stockland, A. L. Freidl, A. F. Hasler, J. J. Stone and
I. A. Guzei, J. Org. Chem., 2005, 70, 244.
This journal is
The Royal Society of Chemistry 2007
Dalton Trans., 2007, 5123–5125 | 5125
©