Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C5CC05367F
COMMUNICATION
Journal Name
the Ag+-coordination complex of 1 (Ag+:1 = 1:2), a fact that is clearly
consistent with the proposed model of the structural
transformation (Figure 3 and S40b, SI).
4
5
6
(a) J. Nanda, A. Biswas, B. Adhikari and A. Banerjee, Angew.
Chem. Int. Ed., 2013, 52, 1; (b) S. Bhattacharya, A. Srivastava and
A. Pal, Angew. Chem., Int. Ed., 2006, 45, 2934.
(a) P. K. Vemula and G. John, Acc. Chem. Res., 2008, 41, 769; (b) A.
R. Hirst, B. Escuder, J. F. Miravet and D. K. Smith, Angew. Chem.,
Int. Ed., 2008, 47, 8002.
(a) J. H. Jung, J. H. Lee, J. R. Silverman and G. John, Chem. Soc.
Rev., 2013, 42, 924; (b) T. Tu, W. Fang, X. Bao, X. Li and K. H.
Dötz, Angew. Chem. Int. Ed., 2011, 50, 6601; (c) J. A. Foster and J.
W. Steed, Angew. Chem., Int. Ed., 2010, 49, 6718; (d) M.-O. M.
,
In conclusion, we have demonstrated a self-assembly of a
pyridine appended chiral salicylideneaniline,
1, that forms
reverse vesicles in toluene by adopting a lamellar organization.
Interestingly, the colourless reverse vesicles transform into
helical organizations reversibly on addition of Ag+ accompanied
by a yellow coloured gel formation. This is the first report
where a reverse vesicle-to-helical structural transformation
accompanied by sol-to-gel transition takes place as confirmed
by both microscopy and X-ray diffraction analysis. The
formation of reverse vesicles was further evidenced from a dye
entrapment study. Therefore, this type of structural
transformation may be useful in achieving a stimuli-driven
delivery. Thus a keto-enol-tautomerism associated with the
gel-to-sol transition has been demonstrated unambiguously
using visible colour change, UV-Vis absorption and 1H-NMR
spectral studies. It has been also possible to confirm the
presence of the keto form exclusively in the gel phase by
recognizing a distinguishable 1H-NMR signal. It is may be
further emphasized that examples of reverse vesicles are
scarce compared to the aggregates formed in aq. media
(normal micelles or vesicles). Whenever such reports of
reverse micelles or vesicles are known they are generally
observed from lipids and polymers etc.18a,22 Accordingly the
Piepenbrock, G. O. Lloyd, N. Clarke and J. W. Steed, Chem. Rev.
2010, 110, 1960; (e) P. Dastidar, Chem. Soc. Rev., 2008, 37, 2699. f)
D. J. Abdallah and R. G. Weiss, Ad . Mater., 2000, 12, 1237; (g) P.
Terech and R. G. Weiss, Chem. Re , 1997, 97, 3133.
,
(
v
v
.
7
8
9
G. John, G. Zhu, J. Li and J. S. Dordick, Angew. Chem., Int. Ed.,
2006, 45, 4772.
D. Ke, C. Zhan, A. D. Q. Li and J. Yao, Angew. Chem., Int. Ed.
,
2011, 50, 3715.
X. Miao, W. Cao, W. Zheng, J. Wang, X. Zhang, J. Gao, C. Yang, D.
Kong, H. Xu, L. Wang and Z. Yang, Angew. Chem., Int. Ed., 2013,
52, 7781.
10 M. R. Molla and S. Ghosh, Chem. Eur. J., 2012, 18, 9860.
11 (a) Q. Yan and Y. Zhao, Angew. Chem., Int. Ed., 2013, 52, 9948; (b)
Y. Yan, H. Wang, B. Li, G. Hou, Z. Yin, L. Wu and V. W. W. Yam,
Angew. Chem., Int. Ed., 2010, 49, 9233; (c) J.-H. Ryu, E. Lee, Y.-b.
Lim and M. Lee, J. Am. Chem. Soc., 2007, 129, 4808; (d) A.
Ajayaghosh, P. Chithra and R. Varghese, Angew. Chem. Int. Ed.
,
2007, 46, 230; (e) J.-H. Ryu, H.-J. Kim, Z. Huang, E. Lee and M.
Lee, Angew. Chem., Int. Ed., 2006, 45, 5304; (f) C. Park, I. H. Lee, S.
Lee, Y. Song, M. Rhue and C. Kim, Proc. Natl. Acad. Sci. USA
2006, 99, 5355.
,
12 (a) K. Fan, J. Yang, X. Wang and J. Song, Soft Matter, 2014, 10
,
8370; (b) K. Fan, J. Song, J. Li, X. Guan, N. Tao, C. Tong, H. Shen
and L. Niu, J. Mater. Chem. C, 2013, , 7479; (c) S. Datta and S.
1
formation of reverse vesicles from such
a
simple
Bhattacharya, Chem. Commun., 2012, 48, 877; (d) P. Chen, R. Lu, P.
Xue, T. Xu, G. Chen and Y. Zhao, Langmuir, 2009, 25, 8395; (e) P.
Xue, R. Lu, G. Chen, Y. Zhang, H. Nomoto, M. Takafuji and H.
Ihara, Chem. Eur. J., 2007, 13, 8231.
salicylideneaniline is indeed unprecedented and may spur new
research activity.
This work was supported by J. C. Bose fellowship of DST to
S.B. S.D. thanks CSIR for a senior research fellowship.
13 (a) T. Fukino, H. Joo, Y. Hisada, M. Obana, H. Yamagishi, T.
Hikima, M. Takata, N. Fujita and T. Aida, Science, 2014, 344, 499;
(b) A. Kishimura, T. Yamashita and T. Aida, J. Am. Chem. Soc.
;
2005, 127, 179; (c) H.-J. Kim, J.-H. Lee and M. Lee, Angew. Chem.,
Int. Ed., 2005, 44, 5810.
Notes and references
14 (a) W. Fang, C. Liu, Z. Lu, Z. Sun and T. Tu, Chem. Commun., 2014,
50, 10118; (b) W. Hong, W. Li, X. Hu, B. Zhao, F. Zhang and D.
Zhang, J. Mater. Chem., 2011, 21, 17193.
1
(a) S. Datta and S. Bhattacharya, Chem. Soc. Rev., 2015, DOI:
10.1039/c5cs00093a; (b) A. C. Coleman, J. M. Beierle, M. C. A.
Stuart, B. Maciá, G. Caroli, J. T. Mika, D. J. van Dijken, J. Chen, W.
15 Q. Liu, Y. Wang, W. Li and L. Wu, Langmuir, 2007, 23, 8217.
16 K. Chen, L. Tang, Y. Xia and Y. Wang, Langmuir, 2008, 24, 13838.
17 C. H. Sung, L. R. Kung, C. S. Hsu, T. F. Lin and R. M. Ho, Chem.
Mater., 2006, 18, 352.
18 (a) A. Das and S. Ghosh, Macromolecules, 2013, 46, 3939; (b) X.
Zhang, S. Rehm, M. M. Safont-Sempere and F. Würthner, Nat.
R. Browne and B. L. Feringa, Nat. Nanotechnol., 2011,
Zhang, L. Qin, X. Wang, H. Cao and M. Liu, Adv. Mater., 2014, 26
6959; (d) H. Cao, X. Zhu and M. Liu, Angew. Chem., Int. Ed., 2013,
52, 4122; (e) K. Dan and S. Ghosh, Angew. Chem., Int. Ed., 2013, 52
7300; (f) Z. Zhang, C. Zhan, X. Zhang, S. Zhang, J. Huang, A. D. Q.
Li and J. Yao, Chem. Eur. J., 2012, 18, 12305; (g) D. Ke, C. Zhan, S.
Xu, X. Ding, A. Peng, J. Sun, S. He, A. D. Q. Li and J. Yao, J. Am.
Chem. Soc., 2011, 133, 11022.
(a) K. R. Raghupathi, U. Sridhar, K. Byrne, K. Raghupathi and S.
Thayumanavan, J. Am. Chem. Soc., 2015, 137, 5308; (b) Z. Shen, T.
Wang, L. Shi, Z. Tang and M. Liu, Chem. Sci., 2015, 6, 4267; (c) M.
D. Segarra-Maset, V. J. Nebot, J. F. Miravet and B. Escuder, Chem.
Soc. Rev., 2013, 42, 7086; (d) S. Datta, S. K. Samanta and S.
Bhattacharya, Chem. Eur. J., 2013, 19, 11364; (e) X. Yang, G. Zhang
and D. Zhang, J. Mater. Chem., 2012, 22, 38; (f) C. Wang, Q. Chen,
F. Sun, D. Zhang, G. Zhang, Y. Huang, R. Zhao and D. Zhu, J. Am.
Chem. Soc., 2010, 132, 3092; (g) P. K. Vemula, J. Li and G. John, J.
Am. Chem. Soc., 2006, 128, 8932.
6, 547; (c) L.
,
,
Chem., 2009,
1, 623.
19 (a) J. Zhang, Y.-F. Song, L. Cronin and T. Liu, Chem. Eur. J., 2010,
16, 11320; (b) X.-N. Xu, L. Wang and Z.-T. Li, Chem. Commun.
,
2
2009, 6634.
20 (a) A. Ohshima, A. Momotake and T. J. Arai, Photochem. Photobiol.
, 2004, 162, 473; (b) K. Ogawa and J. Harada, J. Mol. Struct., 2003,
A
647, 211; (c) K. Ogawa, Y. Kasahara, Y. Ohtani and J. Harada, J.
Am. Chem. Soc., 1998, 120, 7107.
21 M. George, S. L. Snyder, P. Terech, C. J. Glinka and R. G. Weiss, J.
Am. Chem. Soc., 2003, 125, 10275.
22 (a) H.-Y. Lee, K. K. Diehn, K. Sun, T. Chen and S. R. Raghavan, J.
Am. Chem. Soc., 2011, 133, 8461; (b) S-H. Tung, H.-Y. Lee and S. R.
Raghavan, J. Am. Chem. Soc., 2008, 130, 8813. (c) D. Domínguez-
Gutiérrez, M. Surtchev, E. Eiser and C. J. Elsevier, Nano Lett., 2006,
3
(a) S. Datta and S. Bhattacharya, Soft Matter, 2015, 11, 1945; (b) P.
Xue, B. Yao, J. Sun, Z. Zhang and R. Lu, Chem.Commun., 2014, 50
,
6, 145; (d) A. Ajayaghosh, R. Varghese, S. Mahesh and V. K.
10284; (c) K. K. Kartha, S. S. Babu, S. Srinivasan and A.
Ajayaghosh, J. Am. Chem. Soc., 2012, 134, 4834; (d) S. R. Jadhav, P.
K. Vemula, R. Kumar, S. R. Raghavan and G. John, Angew. Chem.,
Int. Ed., 2010, 49, 7695.
Praveen, Angew. Chem., Int. Ed., 2006, 45, 7729; (e) S. Basu, D. R.
Vutukuri, S. Thayumanavan, J. Am. Chem. Soc., 2005, 127, 16794.
(f) S. Basu, D. R. Vutukuri, S. Shyamroy, B. S. Sandanaraj and S.
Thayumanavan, J. Am. Chem. Soc., 2004, 126, 9890.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins