Angewandte Chemie International Edition
10.1002/anie.201809765
COMMUNICATION
length H2AX) in 79% isolated yield (Figure S14). Analysis by
atomic absorption spectrophotometer showed that palladium
content attached on chemically synthesized H2AX was
Keywords: chemical protein synthesis • peptides • palladium •
native chemical ligation
0
.00096% (Figure S15).
The heterodimer of synthetic H2AX (20) and H2B was recon-
[
1]
a) L. Zhou, M. T. Holt, N. Ohashi, A. Zhao, M. M. Müller, B. Wang, T. W.
Muir, Nat. Commun. 2016, 7, 10589; b) P. Siman, S. V. Karthikeyan, M.
Nikolov, W. Fischle, A. Brik, Angew. Chem. Int. Ed. 2013, 52, 8059–
8063; c) G. Hayashi, T. Sueoka, A. Okamoto, Chem. Commun. 2016,
52, 4999–5002; d) T. Sueoka, G. Hayashi, A. Okamoto, Biochemistry.
2017, 56, 4767–4772.
stituted to examine whether synthetic H2AX would be folded
properly. Recombinant H2AX or synthetic H2AX were dissolved
in denaturing conditions, and recombinant H2B was added in
separate experiments. These solutions were dialyzed for one
day, and analyzed by size-exclusion chromatography. The
chromatography profile showed a major peak corresponding to
the H2AX–H2B heterodimer (Figure 3B). Each heterodimer was
collected and analyzed by HPLC. The ratios of the peak areas of
synthetic H2AX to H2B were almost the same as those of re-
combinant H2AX to H2B (Figure S16). These results indicated
that synthesized H2AX was properly folded to form a H2AX–
H2B heterodimer, just as recombinant H2AX was.
In conclusion, we have devised an efficient one-pot multiple
peptide ligation employing the triple function of MPAA. We fo-
cused on the scavenging and poisoning effect of MPAA on
palladium complexes, and utilized these features to accomplish
the inactivation of the Pd/TPPTS complex after the removal of
Alloc groups. From clear HPLC data and the high isolated yield
of H2AX, we envisage that six or more peptide segments could
be also assembled in a one-pot manner using our method.
Therefore, our strategy is adequate for the chemical synthesis of
large multifunctionalized proteins. We expect that this technique
will lead to the elucidation of biological functions of proteins and
the development of new medicines.
[2]
[3]
P. E. Dawson, T. W. Muir, I. Clark-Lewis, S. B. H. Kent, Science. 1994,
266, 776–779.
a) D. Bang, S. B. Kent, Angew. Chem. Int. Ed. 2004, 43, 2534–2538; b)
K. Sato, S. Tanaka, K. Yamamoto, Y. Tashiro, T. Narumi, N. Mase,
Chem Commun. 2018, 54, 9127–9130.
[4]
[5]
C. Piontek, D. V. Silva, C. Heinlein, C. Pchner, S. Mezzato, P. Ring, A.
Martin, F. X. Schmid, C. Unverzagt, Angew. Chem., Int. Ed. 2009, 48,
1941–1945.
a) M. Jbara, S. K. Maity, M. Seenaiah, A. Brik, J. Am. Chem. Soc. 2016,
138, 5069–5075; b) S. K. Maity, M. Jbara, S. Laps, A. Brik, Angew.
Chem., Int. Ed. 2016, 55, 8108–8112.
[
[
6]
7]
H. Kunz, C. Unverzagt, Angew. Chem. Int. Ed. Engl. 1984, 23, 436–437.
E. C. B. Johnson, S. B. H. Kent, J. Am. Chem. Soc. 2006, 128, 6640–
6
646.
a) N. Kamo, G. Hayashi, A. Okamoto, Chem. Commun. 2018, 54,
337–4340; b) J. P. Genêt, E. Blart, M. Savignac, S. Lemeune, S. Le-
[
8]
9]
4
maire-Audoire, J. M. Bernard, Synlett. 1993, 680–682.
L. S. Hegedus, R. W. McCabe, Catalyst Poisoning. Marcel Dekker,
New York, 1984.
[
[
10] a) J.-F. Fauvarque, F. Pflüger, M. Troupel, J. Organomet. Chem. 1981,
208, 419–427; b) H. M. Senn, T. Ziegler, Organometallics. 2004, 23,
2
980–2988; c) C. Amatore, E. Carré, A. Jutand, M. Amine M’Barki, G.
Acknowledgements
Meyer, Organometallics. 1995, 14, 5605–5614; d) L. R. Moore, E. C.
Western, R. Craciun, J. M. Spruell, D. A. Dixon, K. P. O’Halloran, K. H.
Shaughnessy, Organometallics. 2008, 27, 576–593.
This research was supported by the Japan Society for the Pro-
motion of Science (JSPS) Grant-in-Aid for Scientific Research
[
[
11] a) M. Ransom, B. K. Dennehey, J. K. Tyler, Cell. 2010, 140, 183–195;
b) D. Rossetto, A. W. Tru-man, S. J. Kron, J. Côté, Clin. Cancer Res.
2010, 16, 4543–4552.
(
A) 15H02190 and 18H03931.
We thank Dr. H. Kurumizaka (Univ. Tokyo) for providing recom-
binant histone H2AX, supported by the Platform Project for
Supporting Drug Discovery and Life Science Research (BINDS)
from AMED under Grant Number (JP18am0101076).
12] a) P. J. Cook, B. G. Ju, F. Telese, X. Wang, C. K. Glass, M. G. Rosen-
feld, Nature. 2009, 458, 591–596; b) S. Kilic, I. Boichenko, C. C. Lech-
ner, B. Fierz, Chem. Sci. 2018, 9, 3704–3709.
[
[
[
13] S. Tang, Y. Y. Si, Z. P. Wang, K. R. Mei, X. Chen, J. Y. Cheng, J.
Zheng, L. Liu, Angew. Chem. Int. Ed. 2015, 54, 5713–5717.
14] T. Takei, T. Andoh, T. Takao, H. Hojo, Angew. Chem. Int. Ed. 2017, 56,
15708–15711.
Conflict of interest
15] K. Aihara, K. Yamaoka, N. Naruse, T. Inokuma, A. Shigenaga, A. Otaka,
Org. Lett. 2016, 18, 596–599.
The authors declare no conflict of interest.
This article is protected by copyright. All rights reserved.