RSC Advances
Paper
15 T. Khajvand, M. J. Chaichi and A. H. Colagar, Sensitive assay 30 J. He, Y. Wang and Y. Feng, Forest of gold nanowires: A new
of hexythiazox residue in citrus fruits using gold type of nanocrystal growth, ACS Nano, 2013, 7, 2733–2740.
nanoparticles-catalysed luminol-H2O2 chemiluminescence, 31 E. L. Kunkes, D. A. Simonetti, R. M. West, J. C. Serrano-Ruiz,
¨
Food Chem., 2015, 173, 514–520.
C. A. Gartner and J. A. Dumesic, Catalytic conversion of
16 H. Lu, J. Li, M. Zhang, D. Wu and Q. Zhang, A highly selective
and sensitive colorimetric uric acid biosensor based on
biomass to monofunctional hydrocarbons and targeted
liquid-Fuel classes, Science, 2008, 322, 417–421.
Cu(II)-catalyzed oxidation of 3,30,5,50-tetramethylbenzidine, 32 A. Kowal, M. Li, M. Shao, K. Sasaki, M. B. Vukmirovic,
Sens. Actuators, B, 2017, 244, 77–83.
17 R. K. Bera, A. Anoop and C. R. Raj, Enzyme-free colorimetric
J. Zhang, et al., Ternary Pt/Rh/SnO2 electrocatalysts for
oxidizing ethanol to CO2, Nat. Mater., 2009, 8, 325–330.
assay of serum uric acid, Chem. Commun., 2011, 47, 11498– 33 E. Formo, E. Lee, D. Campbell and Y. Xia, Functionalization
11500.
of electrospun TiO2 nanobers with pt nanoparticles and
nanowires for catalytic applications, Nano Lett., 2008, 8,
668–672.
18 D. Wu, H. Lu, H. Xie, J. Wu, C. Wang and Q. Zhang, Uricase-
stimulated etching of silver nanoprisms for highly selective
and sensitive colorimetric detection of uric acid in human 34 L. Kelland, The resurgence of platinum-based cancer
serum, Sens. Actuators, B, 2015, 221, 1433–1440. chemotherapy, Nat. Rev. Cancer, 2007, 7, 573–584.
19 K. Tan, G. Yang, H. Chen, P. Shen, Y. Huang and Y. Xia, Facet 35 D. Suh, S. Lee, C. Xu, A. A. Jan and S. Baik, Signicantly
dependent binding and etching: ultra-sensitive colorimetric
visualization of blood uric acid by unmodied silver
nanoprisms, Biosens. Bioelectron., 2014, 59, 227–232.
enhanced phonon mean free path and thermal
conductivity by percolation of silver nanoowers, Phys.
Chem. Chem. Phys., 2019, 21, 2453–2462.
20 D. Li, Q. He, Y. Yang, H. Mohwald and J. Li, Two-stage pH 36 A. K. Fakhre, C. M. Ajmal and S. Bae, Silver nanoower
response
nanoparticles, Macromolecules, 2008, 41, 7254–7256.
21 J. Lu, Y. Xiong, C. Liao, C. Liao and F. Ye, Colorimetric
of
poly(4-vinylpyridine)
graed
gold
decorated graphene oxide sponges for highly sensitive
variable stiffness stress sensors, Small, 2018, 14, 1800549–
1800558.
detection of uric acid in human urine and serum based on 37 S. Tang, H. Shen and Y. Hao, A novel cytosensor based on
peroxidase mimetic activity of MIL-53(Fe), Anal. Methods,
2015, 7, 9894–9899.
22 Q. Lu, J. Deng, Y. Hou, H. Wang, H. Li and Y. Zhang, One-
Pt@Ag nanoowers and AuNPs/Acetylene black for
ultrasensitive and highly specic detection of circulating
tumor cells, Biosens. Bioelectron., 2018, 104, 72–78.
step electrochemical synthesis of ultrathin graphitic 38 H. Niu, L. Zhang, J. Feng, Q. Zhang, H. Huang and A. Wang,
carbon nitride nanosheets and their application to the
detection of uric acid, Chem. Commun., 2015, 51, 12251–
12253.
Graphene-encapsulated cobalt nanoparticles embedded in
porous nitrogen-doped graphitic carbon nanosheets as
efficient electrocatalysts for oxygen reduction reaction, J.
Colloid Interface Sci., 2019, 552, 744–751.
23 Q. Zhuang, Z. Lin, Y. Jiang, H. Deng, S. He, L. Su, et al.,
Peroxidase-like activity of nanocrystalline cobalt selenide 39 H. Niu, H. Chen, G. Wen, J. Feng, Q. Zhang and A. Wang,
and its application for uric acid detection, Int. J. Nanomed.,
2017, 12, 3295–3302.
24 K. Hirakawa, T. Kaneko and N. Toshima, Kinetics of
spontaneous bimetallization between silver and noble
metal nanoparticles, Chem.–Asian J., 2018, 13, 1892–1896.
One-pot solvothermal synthesis of three-dimensional
hollow PtCu alloyed dodecahedron nanoframes with
excellent electrocatalytic performances for hydrogen
evolution and oxygen reduction, J. Colloid Interface Sci.,
2019, 539, 525–532.
25 P. Biswas, S. Ganguly and P. Dastidar, Stimuli-pesponsive 40 H. Chen, M. Jin, L. Zhang, A. Wang, J. Yuan, Q. Zhang and
metallogels for synthesizing Ag nanoparticles and sensing
hazardous gases, Chem.–Asian J., 2018, 13, 1941–1949.
26 H. You, S. Yang, B. Ding and H. Yang, Synthesis of colloidal
metal and metal alloy nanoparticles for electrochemical
energy applications, Chem. Soc. Rev., 2013, 42, 2880–2904.
J. Feng, One-pot aqueous synthesis of two-dimensional
porous bimetallic PtPd alloyed nanosheets as highly active
and durable electrocatalyst for boosting oxygen reduction
and hydrogen evolution, J. Colloid Interface Sci., 2019, 543,
1–8.
27 A. Wang, Y. Li, M. Wen, G. Yang, J. Feng, J. Yang, et al., 41 D. Yao, A. G. Vlessidis and N. P. Evmiridis, Microdialysis
Melamine assisted one-pot synthesis of Au nanoowers
and their catalytic activity towards p-nitrophenol, New J.
Chem., 2012, 36, 2286–2291.
sampling and monitoring of uric acid in vivo by
chemiluminescence reaction and an enzyme on
immobilized chitosan support membrane, Anal. Chim.
Acta, 2003, 478, 23–30.
a
28 A. Ruditskiy and Y. Xia, Toward the Synthesis of Sub-15 nm
Ag Nanocubes with Sharp Corners and Edges: The Roles of 42 L. Liu, L. Liu, Y. Wang and B. Ye, Novel electrochemical
Heterogeneous Nucleation and Surface Capping, J. Am.
Chem. Soc., 2016, 138, 3161–3167.
29 C. Morita-Imura, T. Kobayashi, Y. Imura, T. Kawai,
sensor based on bimetallic metal–organic framework-
derived porous carbon for detection of uric acid, Talanta,
2019, 199, 478–484.
H. Shindo, et al., pH-induced recovery and redispersion of 43 P. L. D. Santos, V. Katic, K. C. F. Toledo and J. A. Bonacin,
shape-controlled gold nanorods for nanocatalysis, RSC
Adv., 2015, 5, 75889–75894.
Photochemical one-pot synthesis of reduced graphene
oxide/Prussian blue nanocomposite for simultaneous
36584 | RSC Adv., 2019, 9, 36578–36585
This journal is © The Royal Society of Chemistry 2019