Page 11 of 15
Journal of the American Chemical Society
1
2
REFERENCES
D’Accolti, L.; Fusco, C.; Gandolfi, R.; Eaton, P. E.; Curci, R.
Oxyfunctionalization of non-natural targets by dioxiranes. 6. On the
selective hydroxylation of cubane. Org. Lett. 2009, 11, 3574. (d)
Fokin, A. A.; Lauenstein, O.; Gunchenko, P. A.; Schreiner, P. R.
Halogenation of cubane under phase-transfer conditions: single and
double C–H-bond substitution with conservation of the cage
structure. J. Am. Chem. Soc. 2001, 123, 1842.
1. (a) Ahalawat, N.; Mondal, J. Mapping the substrate recognition
pathway in cytochrome P450. J. Am. Chem. Soc. 2018, 140, 17743.
(b) Chen, K.; Zhang, S.-Q.; Brandenberg, O. F.; Hong, X.; Arnold, F.
H. Alternate heme ligation steers activity and selectivity in
engineered cytochrome P450-catalyzed carbene-transfer reactions. J.
Am. Chem. Soc. 2018, 140, 16402. (c) Guengerich, F. P. Mechanisms
of cytochrome P450-catalyzed oxidations. ACS Catal. 2018, 8,
10964. (d) Lewis, R. D.; Garcia-Borràs, M.; Chalkley, M. J.; Buller,
A. R.; Houk, K. N.; Kan, S. B. J.; Arnold, F. H. Catalytic iron-carbene
intermediate revealed in a cytochrome c carbene transferase. Proc.
Natl. Acad. Sci U. S. A. 2018, 115, 7308. (e) Zaragoza, J. P. T.; Yosca,
T. H.; Siegler, M. A.; Moënne-Loccoz, P.; Green, M. T.; Goldberg,
D. P. Direct observation of oxygen rebound with an iron-hydroxide
complex. J. Am. Chem. Soc. 2017, 139, 13640. (f) Ramanan, R.;
Dubey, K. D.; Wang, B.; Mandal, D.; Shaik, S. Emergence of
3
4
5
6
7
8
9
6. (a) Eaton, P. E. Cubanes: starting materials for the chemistry of the
1990s and the new century. Angew. Chem. Int. Ed. 1992, 31, 1421.
(b) Wlochal, J.; Davies, R. D. M.; Burton, J. Cubanes in medicinal
chemistry: synthesis of functionalized building blocks. Org. Lett.
2014, 16, 4094. (c) Chalmers, B. A.; Xing, H.; Houston, S.; Clark,
C.; Ghassabian, S.; Kuo, A.; Cao, B.; Reitsma, A.; Murray, C.-E. P.;
Stok, J. E.; Boyle, G. M.; Pierce, C. J.; Littler, S. W.; Winkler, D. A.;
Bernhardt, P. V.; Pasay, C.; De Voss, J. J.; McCarthy, J.; Parsons, P.
G.; Walter, G. H.; Smith, M. T.; Cooper, H. M.; Nilsson, S. K.;
Tsanaktsidis, J.; Savage, G. P.; Williams, C. M. Validating Eaton’s
hypothesis: cubane as a benzene bioisostere. Angew. Chem. Int. Ed.
2016, 55, 3580. (d) Wlochal, J.; Davies, R. D. M.; Burton, J.
Synthesis of novel amino acids containing cubane. Synlett 2016, 27,
919. (e) Auberson, Y. P.; Brocklehurst, C.; Furegati, M.; Fessard, T.
C.; Koch, G.; Decker, A.; La Vecchia, L.; Briard, E. Improving
nonspecific binding and solubility: bicycloalkyl groups and cubanes
as para-phenyl bioisosteres. ChemMedChem 2017, 12, 590. (f) Xing,
H.; Houston, S. D.; Chen, X.; Ghassabian, S.; Fahrenhorst-Jones, T.;
Kuo, A.; Murray, C.-E. P.; Conn, K.-A.; Jaeschke, K. N.; Jin, D.-Y.;
Pasay, C.; Bernhardt, P. V.; Burns, J. M.; Tsanaktsidis, J.; Savage, G.
P.; Boyle, G. M.; De Voss, J. J.; McCarthy, J.; Walter, G. H.; Burne,
T. H. J.; Smith, M. T.; Tie, J.-K.; Williams, C. M. Cyclooctatetraene:
a bioactive cubane paradigm complement. Chem. Eur. J. 2019, 25,
2729. (g) Houston, S. D.; Chalmers, B. A.; Savage, G. P.; Williams,
C. M. Enantioselective synthesis of (R)-2-cubylglycine including
unprecedented rhodium mediated C–H insertion of cubane. Org.
Biomol. Chem. 2019, 17, 1067. (h) Reekie, T. A.; Williams, C. M.;
Rendina, L. M.; Kassiou, M. Cubanes in medicinal chemistry. J. Med.
Chem. 2019, 62, 1078. (i) Mykhailiuk, P. K. Saturated bioisosteres of
benzene: where to go next? Org. Biomol. Chem. 2019, 17, 2839. (j)
Houston, S. D.; Fahrenhorst-Jones, T.; Xing, H.; Chalmers, B. A.;
Sykes, M. L.; Stok, J. E.; Farfan Soto, C.; Burns, J. M.; Bernhardt, P.
V.; De Voss, J. J.; Boyle, G. M.; Smith, M. T.; Tsanakstidis, J.;
Savage, G. P.; Avery, V. M.; Williams, C. M. The cubane paradigm
in bioactive molecule discovery: further scope, limitations and the
cyclooctatetraene complement. Org. Biomol. Chem. 2019, 17, 6790.
(k) Xing, H.; Houston, S. D.; Chen, X.; Jin, D.-Y.; Savage, G. P.; Tie,
J.-K.; Williams, C. M. Determining the necessity of phenyl ring -
character in warfarin. Bioorg. Med. Chem. Lett. 2019, 29, 1954.
7. Zhang, Q. L.; Chen, B. Z. DFT studies on the cascade
rearrangement reactions of the cubylcarbinyl radical. J. Phys. Org.
Chem. 2011, 24, 147.
8. (a) Eaton, P. E.; Yip, Y. C. The preparation and fate of
cubylcarbinyl radicals. J. Am. Chem. Soc. 1991, 113, 7692. (b) Choi,
S. Y.; Eaton, P. E.; Newcomb, M.; Yip, Y. C. Picosecond radical
kinetics. Bond cleavage of the cubylcarbinyl radical. J. Am. Chem.
Soc. 1992, 114, 6326. (c) Della, E. W.; Head, N. J.; Mallon, P.;
Walton, J. C. Homolytic reactions of cubanes. Generation and
characterization of cubyl and cubylcarbinyl radicals. J. Am. Chem.
Soc. 1992, 114, 10730. (d) Newcomb, M. Competition methods and
scales for alkyl radical reaction kinetics. Tetrahedron 1993, 49, 1151.
9. Choi, S. Y.; Eaton, P. E.; Hollenberg, P. F.; Liu, K. E.; Lippard, S.
J.; Newcomb, M.; Putt, D. A.; Upadhyaya, S. P.; Xiong, Y. S.
Regiochemical variations in reactions of methylcubane with tert-
butoxyl radicals, cytochrome P-450 enzymes, and a methane
monooxygenase system. J. Am. Chem. Soc. 1996, 118, 6547.
10. (a) Newcomb, M.; Shen, R.; Choi, S. Y.; Toy, P. H.; Hollenberg,
P. F.; Vaz, A. D. N.; Coon, M. J. Cytochrome P450-catalyzed
hydroxylation of mechanistic probes that distinguish between
radicals and cations. Evidence for cationic but not for radical
intermediates. J. Am. Chem. Soc. 2000, 122, 2677. (b) Jin, Y.;
Lipscomb, J. D. Probing the mechanism of C–H activation: oxidation
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
function
in
P450-proteins:
A
combined
quantum
mechanical/molecular mechanical and molecular dynamics study of
the reactive species in the H2O2-dependent cytochrome P450SP and
its regio- and enantioselective hydroxylation of fatty acids. J. Am.
Chem. Soc. 2016, 138, 6786.
2. See, for example: (a) Alkhalaf, L. M.; Barry, S. M.; Rea, D.; Gallo,
A.; Griffiths, D.; Lewandowski, J. R.; Fulop, V.; Challis, G. L.
Binding of distinct substrate conformations enables hydroxylation of
remote sites in thaxtomin D by cytochrome P450 TxtC. J. Am. Chem.
Soc. 2019, 141, 216. (b) Tsutsumi, H.; Katsuyama, Y.; Izumikawa,
M.; Takagi, M.; Fujie, M.; Satoh, N.; Shin-ya, K.; Ohnishi, Y.
Unprecedented cyclization catalyzed by a cytochrome P450 in
benzastatin biosynthesis. J. Am. Chem. Soc. 2018, 140, 6631. (c)
Nagel, R.; Peters, R. J. Diverging mechanisms: cytochrome-P450-
catalyzed demethylation and -lactone formation in bacterial
gibberellin biosynthesis. Angew. Chem. Int. Ed. 2018, 57, 6082. (d)
Dang, T.-T. T.; Franke, J.; Tatsis, E.; O’Connor, S. E. Dual catalytic
activity of a cytochrome P450 controls bifurcation at a metabolic
branch point of alkaloid biosynthesis in Rauwolfia serpentina.
Angew. Chem. Int. Ed. 2017, 56, 9440. (e) ) Grant, J. L.; Mitchell, M.
E.; Makris, T. M. Catalytic strategy for carbon−carbon bond scission
by the cytochrome P450 OleT. Proc. Natl. Acad. Sci. U. S. A. 2016,
113, 10049.
3. (a) Ortiz de Montellano, P. R. Substrate Oxidation by Cytochrome
P450 Enzymes. In Cytochrome P450: Structure, Mechanism, and
Biochemistry, 4th edition.; Ortiz de Montellano, P. R., Eds.; Springer:
Switzerland, 2015, Vol. 1, Ch 4. (b) Ortiz de Montellano, P. R.
Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem.
Rev. 2010, 110, 932. (c) Denisov, I. G.; Makris, T. M.; Sligar, S. G.;
Schlichting, I. Structure and chemistry of cytochrome P450. Chem.
Rev. 2005, 105, 2253. (d) Poulos, T. L. Heme enzyme structure and
function. Chem. Rev. 2014, 114, 3919. (e) Rittle, J.; Green, M. T.
Cytochrome P450 compound I: capture, characterization, and C-H
bond activation kinetics. Science 2010, 330, 933. (f) Groves, J. T.;
McClusky, G. A. Aliphatic hydroxylation via oxygen rebound.
Oxygen transfer catalyzed by iron. J. Am. Chem. Soc. 1976, 98, 859.
(g) Huang, X.; Groves, J. T. Beyond ferryl-mediated hydroxylation:
40 years of the rebound mechanism and C–H activation. J. Biol.
Inorg. Chem. 2017, 22, 185. (h) Cooper, H. L. R.; Groves, J. T.
Molecular probes of the mechanism of cytochrome P450. Oxygen
traps a substrate radical intermediate. Arch. Biochem. Biophys. 2011,
507, 111. (i) Austin, R. N.; Luddy, K.; Erickson, K.; Pender-Cudlip,
M.; Bertrand, E.; Deng, D.; Buzdygon, R. S.; van Beilen, J. B.;
Groves, J. T. Cage escape competes with geminate recombination
during alkane hydroxylation by the diiron oxygenase AlkB. Angew.
Chem. Int. Ed. 2008, 47, 5232.
4. Auclair, K.; Hu, Z.; Little, D. M.; Ortiz de Montellano, P. R.;
Groves, J. T. Revisiting the mechanism of P450 enzymes with the
radical clocks norcarane and spiro[2,5]octane. J. Am. Chem. Soc.
2002, 124, 6020.
5. (a) Biegasiewicz, K. F.; Griffiths, J. R.; Savage, G. P.;
Tsanaktsidis, J.; Priefer, R. Cubane: 50 years later. Chem. Rev. 2015,
115, 6719. (b) Doedens, R. J.; Eaton, P. E.; Fleischer, E. B. The bent
bonds of cubane. Eur. J. Org. Chem. 2017, 2627. (c) Annese, C.;
ACS Paragon Plus Environment