I. Sádaba et al. / Carbohydrate Research 346 (2011) 2785–2791
2791
containing the aqueous phase with the soluble catalyst for initial-
ising a subsequent run.
Acknowledgements
This work was partially funded by the Spanish Ministry of
Science and Innovation (MICINN: ENE-2009-12743-C04-01), ‘Con-
sejería de Educación’ of the Autonomous Government of Madrid
(CAM: CARDENER-CM) and the Portuguese Fundação para a Ciên-
cia e a Tecnologia (FCT), POCI and FEDER (project POCI/QUI/
56112/2004). I. Sádaba is grateful to the Spanish National Research
Council (CSIC) for a JAE-Predoc and for the financial support for the
stay at CICECO, University of Aveiro. S. Lima is grateful to the FCT
for post-doctoral grant. The authors wish to express their gratitude
to Dr. F. Domingues (Department of Chemistry, University of
Aveiro) for access to HPLC equipment and to Doctor Martyn
Pillinger (CICECO, University of Aveiro) for helpful discussions.
Figure 8. Furfural yield versus reaction time, using as catalysts the (soluble) salts,
NaHPO4 (10 mM), VOSO4 (10 mM), Na4P2O7 (5 mM) or a mixture of VOSO4 (10 mM)
and Na4P2O7 (5 mM); the data for VP2-550-2h are given for comparison. Reaction
conditions: 30 mg of xylose, 170 °C, 1 mL water–toluene mixture (3:7 volume
ratio).
References
1. Biorefineries—Industrial Processes and Products Status Quo and Future Directions;
Kamm, B., Gruber, P. R., Kamm, M., Eds.; Wiley-VCH: Weinheim, 2005.
2. Bozell, J. J.; Petersen, G. R. Green Chem. 2010, 12, 539–554.
3. Zeitsch, K. J. The Chemistry and Technology of Furfural and Its Many By-
Products, 1st ed. In Sugar Series; Elsevier: The Netherlands, 2000; Vol. 13,.
4. Moreau, C.; Durand, R.; Peyron, D.; Duhamet, J.; Rivalier, P. Ind. Crops Prod.
1998, 7, 95–99.
5. O’Neill, R.; Ahmad, M.; Vanoye, L.; Aiouache, F. Ind. Eng. Chem. Res. 2009, 48,
4300–4306.
6. Lima, S.; Fernandes, A.; Antunes, M. M.; Pillinger, M.; Ribeiro, F.; Valente, A. A.
Catal. Lett. 2010, 135, 41–47.
7. Lima, S.; Antunes, M. M.; Fernandes, A.; Pillinger, M.; Ribeiro, F.; Valente, A. A.
Appl. Catal., A 2010, 388, 141–148.
8. Dias, A. S.; Pillinger, M.; Valente, A. A. J. Catal. 2005, 229, 414–423.
9. Dias, A. S.; Pillinger, M.; Valente, A. A. Microporous Mesoporous Mater. 2006, 94,
214–225.
catalysts (used in amounts equivalent to the approximate leached
amounts of V and P observed for VP2-550-2h), in the reaction of
xylose, at 170 °C. The furfural yield reached at 6 h reaction follows
the order, (Na4P2O7+VOSO4) (17%) < Na4P2O7 (24%) < NaHPO4
(34%) < VOSO4 (42%) < VP2-550-2h (56%), Figure 8. Based on these
results, the catalytic performance of the VP2-550-2h catalyst is dif-
ferent from those of the tested salts (containing similar ions), lead-
ing to higher furfural yields, under similar reaction conditions.
10. Shi, X.; Wu, Y.; Li, P.; Yi, H.; Yang, M.; Wang, G. Carbohydr. Res. 2011, 346, 480–
487.
4. Conclusions
11. Dias, A. S.; Pillinger, M.; Valente, A. A. Appl. Catal., A 2005, 285, 126–131.
12. Dias, A. S.; Lima, S.; Carriazo, D.; Rives, V.; Pillinger, M.; Valente, A. A. J. Catal.
2006, 244, 230–237.
13. Chareonlimkun, A.; Champreda, V.; Shotipruk, A.; Laosiripojana, N. Bioresour.
Technol. 2010, 101, 4179–4186.
14. Carlini, C.; Patrono, P.; Galletti, A. M. R.; Sbrana, G. Appl. Catal., A 2004, 275,
111–118.
15. Wang, F.; Dubois, J.-L.; Ueda, W. J. Catal. 2009, 268, 260–267.
16. Wang, F.; Dubois, J.-L.; Ueda, W. Appl. Catal., A 2010, 376, 25–32.
17. Bordes, E. Catal. Today 1987, 1, 499–526.
18. Taufiq-Yap, Y. H.; Saw, C. S. Catal. Today 2008, 131, 285–291.
19. Landi, G.; Lisi, L.; Volta, J. C. J. Mol. Catal. A: Chem. 2004, 222, 175–181.
20. Hutchings, G. J. J. Mater. Chem. 2004, 14, 3385–3395.
21. Cavani, F.; De Santi, D.; Luciani, S.; Löfberg, A.; Bordes-Richard, E.; Cortelli, C.;
Leanza, R. Appl. Catal., A 2010, 376, 66–75.
22. Zhu, Y. J.; Li, J.; Xie, X. F.; Yang, X. G.; Wu, Y. J. Mol. Catal. A: Chem. 2006, 246,
185–189.
23. Kamiya, Y. J. Jpn. Pet. Inst. 2003, 46, 62–68.
24. Johnson, J. W.; Johnston, D. C.; Jacobson, A. J.; Brody, J. F. J. Am. Chem. Soc. 1984,
106, 8123–8128.
25. Griesel, L.; Bartley, J. K.; Wells, R. P. K.; Hutchings, G. J. J. Mol. Catal. A: Chem.
2004, 220, 113–119.
26. Albonetti, S.; Cavani, F.; Trifirò, F.; Venturoli, P.; Calestani, G.; López Granados,
M.; Fierro, J. L. G. J. Catal. 1996, 160, 52–64.
27. Hannour, F. K.; Martin, A.; Kubias, B.; Lücke, B.; Bordes, E.; Courtine, P. Catal.
Today 1998, 40, 263–272.
28. Igarashi, H.; Tsuji, K.; Okuhara, T.; Misono, M. J. Phys. Chem. 1993, 97, 7065–
7071.
29. Sananes, M. T.; Hutchings, G. J.; Volta, J. C. J. Catal. 1995, 154, 253–260.
30. Rownaghi, A. A.; Taufiq-Yap, Y. H.; Rezaei, F. Ind. Eng. Chem. Res. 2009, 48,
7517–7528.
31. Cornaglia, L. M.; Lombardo, E. A.; Andersen, J. A.; Fierro, J. L. G. Appl. Catal., A
1993, 100, 37–50.
32. Jung, S. M.; Grange, P. Appl. Catal., B 2002, 36, 325–332.
33. Centeno, M. A.; Carrizosa, I.; Odriozola, J. A. J. Alloys Compd. 2001, 323–324,
597–600.
The dehydration of xylose can be effectively carried out in the presence
of vanadium phosphates as catalysts. The (VO)2P2O7 material (denoted
VP2-550-2h), prepared by calcination of the precursor VOHPO4ꢀ0.5H2O
at 550 °C/2 h, exhibited superior catalytic performance amongst the
investigated materials. The VP2-550-2h solid was essentially insoluble
in the reaction medium, and catalytic tests and solid state characterisation
studies of the solid separated after the catalytic reaction, revealed that (i)
the catalytic results correlated with the surface acid properties; (ii) the so-
lid could be recycled without drop in catalytic activity and furfural yields
(ca. 53% at 4 h reaction); (iii) no significant structural modifications of the
recovered solid were observed. Based on these results, one could conclude
that the catalytic reaction of xylose in the presence of VP2-550-2h is het-
erogeneous in nature. However, detailed studies based on ICP-MS analy-
ses coupled with catalytic tests (directed towards the assessment of
homo/heterogeneous nature of the catalytic reaction) indicated that the
VP2-550-2h solid actually acts as a sourceofveryactive(presentinminor
amounts) water-soluble species, which are responsible for the observed
catalytic activity. The VP2-550-2h catalyst leads to higher furfural yields
than for the soluble salts (containing similar ions), VOSO4 and Na4P2O7
(or their mixture), under similar reaction conditions. A concentration of
(VO)2P2O7 as low as 5 mM, led to ca. 56% furfural yield, at 170 °C/6 h reac-
tion. It is worth stressing the importance of conducting experiments in or-
der to unveil the effective homo/heterogeneous nature of the catalytic
reaction because soluble species can be extremely active, requiring minor
amounts for performing effectively the catalytic reaction.
In overall, furfural can be effectively synthesised via the dehy-
dration of xylose in the presence of minor amounts of (VO)2P2O7
and, in this case, the catalyst recycling could involve the separation
of the toluene phase from the aqueous one (decantation) after the
reaction of xylose, the recovery of furfural by distillation, and the
used toluene extracting solvent could be recharged to the reactor
34. Sun, D.; Liu, Q.; Liu, Z.; Gui, G.; Huang, Z. Appl. Catal., B 2009, 92, 462–467.
35. Van Tongelen, M. J. Catal. 1966, 5, 535–537.
36. Busca, G.; Centi, G.; Trifiró, F.; Lorenzelli, V. J. Phys. Chem. 1986, 90, 1337–1344.
37. Antal, M. J.; Leesomboon, T.; Mok, W. S. Carbohydr. Res. 1991, 217, 71–85.
38. Dias, A. S.; Lima, S.; Pillinger, M.; Valente, A. A. Catal. Lett. 2007, 114, 151–160.