Journal of Medicinal Chemistry
ARTICLE
’ AUTHOR INFORMATION
in association with the inhibition of constitutively active NF-kappaB and
STAT3 pathways in Hodgkin’s lymphoma cells. Int. J. Cancer 2008,
123, 56–65.
Corresponding Authors
*For B.B.: phone, 91-33-2337-9544; E-mail: bablu@boseinst.
ernet.in. For A.S.: phone, 91-11- 26717121; E-mail, surolia@nii.
res.in.
(14) Van Erk, M. J.; Teuling, E.; Staal, Y. C.; Huybers, S.; Van
Bladeren, P. J.; Aarts, J. M.; Van Ommen, B. Time- and dose-dependent
effects of curcumin on gene expression in human colon cancer cells.
J Carcinog. 2004, 3, 8.
(15) Jana, N. R.; Dikshit, P.; Goswami, A.; Nukina, N. Inhibition of
proteasomal function by curcumin induces apoptosis through mito-
chondrial pathway. J. Biol. Chem. 2004, 279, 11680–11685.
(16) Anto, R. J.; Mukhopadhyay, A.; Denning, K.; Aggarwal, B. B.
Curcumin (diferuloylmethane) induces apoptosis through activation of
caspase-8, BID cleavage and cytochrome c release: its suppression by
ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 2002, 23, 143–150.
(17) Aggarwal, B. B.; Kumar, A.; Bharti, A. C. Anticancer potential of
curcumin: preclinical and clinical studies. Anticancer Res. 2003,
23, 363–298.
(18) Qiu, X.; Du, Y.; Lou, B.; Zuo, Y.; Shao, W.; Huo, Y.; Huang, J.;
Yu, Y.; Zhou, B.; Du, J.; Fu, H.; Bu, X. Synthesis and identification of new
4-arylidene curcumin analogs as potential anticancer agents targeting
nuclear factor-kB signaling pathway. J. Med. Chem. 2010, 53, 8260–
8273.
(19) Gupta, K. K.; Bharne, S. S.; Rathinasamy, K.; Naik, N. R.; Panda,
D. Dietary antioxidant curcumin inhibits microtubule assembly through
tubulin binding. FEBS J. 2006, 273, 5320–5332.
(20) Banerjee, M.; Singh, P.; Panda, D. Curcumin suppresses the
dynamic instability of microtubules, activates the mitotic checkpoint and
induces apoptosis in MCF-7 cells. FEBS J. 2010, 277, 3437–3448.
(21) Fourest-Lieuvin, A.; Peris, L.; Gache, V.; Garcia-Saez, I.; Juillan-
Binard, C.; Lantez, V.; Job, D. Microtubule regulation in mitosis: tubulin
phosphorylation by the cyclin-dependent kinase Cdk1. Mol. Biol. Cell
2006, 17, 1041–1050.
’ ACKNOWLEDGMENT
This work is supported in part by grant from the Department
of Atomic Energy (DAE) to B. Bhattacharyya as a Raja Ramanna
fellow.
’ ABBREVIATIONS USED
PIPES, piperazine-N,N0-bis(2-ethanesulphonic acid); EGTA,
ethylene glycol-bis(β-aminoethyl ether)N,N,N0,N0-tetraacetic acid;
MgCl2, magnesium chloride; GTP, guanosine-50-triphosphate;
PDB, Protein Data Bank; ITC, isothermal titration calorimetry;
AC, [2-methoxy-5-(20,30,40-trimethoxyphenyl)tropone]; SAR,
structureꢀactivity relationship; FRET, fluorescence resonance
energy transfer
’ REFERENCES
(1) Correia, J. J.; Lobert, S. Physiochemical aspects of tubulin-
interacting antimitotic drugs. Curr. Pharm. Des. 2001, 7, 1213–1228.
(2) Jordan, A.; Hadfield, J. A.; Lawrence, N. J.; McGown., A. T.
Tubulin as a target for anticancer drugs: agents which interact with the
mitotic spindle. Med. Res. Rev. 1998, 18, 259–296.
(3) Chen, G. K.; Durꢀan, G. E.; Mangili, A.; Beketic-Oreskovic, L.;
Sikic, B. I. MDR1 activation is the predominant resistance mechanism
selected by vinblastine in MES-SA cells. Br. J. Cancer 2000, 83, 892–896.
(4) Orr, G. A.; Verdier-Pinard, P.; McDaid, H.; Horwitz, S. B.
Mechanisms of taxol resistance related to microtubules. Oncogene
2003, 22, 7280–7295.
(22) Hearn, B. R.; Shaw, S. J.; Myles, D. C. Microtubule targeting
agents. Compr. Med. Chem. II 2007, 7, 81–110.
(23) RayChaudhuri, A.; Tomita, I.; Mizuhashi, F.; Murata, K.;
Ludue~na, R. F. Distinct and overlapping binding sites for IKP104 and
vinblastine on tubulin. J. Protein Chem. 1998, 17, 685–690.
(24) Wang, Y. J.; Pan, M. H.; Cheng, A. L.; Lin, L. I.; Ho, Y. S.; Hsieh,
C. Y.; Lin, J. K. Stability of curcumin in buffer solutions and character-
ization of its degradation products. J. Pharm. Biomed. Anal. 1997,
12, 1867–1876.
(5) Pannacciulli, I.; Ballarino, P.; Castello, G.; Arboscello, E.; Botta,
M.; Tredici, S.; Lerza., R. In vitro toxicity of taxol based anticancer drug
combinations on human hemopoietic progenitors. Anticancer Res. 1999,
19, 409–412.
(25) Mishra, S.; Karmodiya, K.; Surolia, N.; Surolia, A. Synthesis and
exploration of novel curcumin analog as antimalarial agents. Bioorg. Med.
Chem. 2008, 16, 2894–2902.
(26) Sch€on, A.; Madani, N.; Smith, A. B.; Lalonde, J. M.; Freire, E.
Some binding-related drug properties are dependent on thermodynamic
signature. Chem. Biol. Drug Des. 2011, 77, 161–165.
(27) Perozzo, R.; Folkers, G.; Scapozza, L. Thermodynamics of
proteinꢀligand interactions: history, presence, and future aspects.
J. Recept. Signal Transduction Res. 2004, 24, 1–52.
(28) Kauzmann, W. Some factors in the interpretation of protein
denaturation. Adv. Protein Chem. 1959, 14, 1–63.
(6) Sun, W.; Wang, W.; Kim, J.; Keng, P.; Yang, S.; Zhang, H.; Liu,
C.; Okunieff, P.; Zhang, L. Anti-cancer effect of resveratrol is associated
with induction of apoptosis via a mitochondrial pathway alignment. Adv.
Exp. Med. Biol. 2008, 614, 179–186.
(7) Mukherjee, S.; Acharya, B. R.; Bhattacharyya, B.; Chakrabarti, G.
Genistein arrests cell cycle progression of A549 cells at the G2/M phase
and depolymerizes interphase microtubules through binding to a unique
site of tubulin. Biochemistry 2010, 49, 1702–1712.
(8) Sarkar, F. H.; Li, Y. Harnessing the fruits of nature for the
development of multitargeted cancer therapeutics. Cancer Treat. Rev.
2009, 35, 597–607.
(29) Baldwin, R. L. Temperature dependence of the hydrophobic
interaction in protein folding. Proc. Natl. Acad. Sci. U.S.A. 1986, 83,
8069–8072.
(30) Freire, E. Do enthalpy and entropy distinguish first in class from
best in class? Drug Discovery Today 2008, 13, 869–874
(31) Eisinger, J. Intermolecular energy transfer in adrenocorticotro-
pin. Biochemistry 1969, 8, 3902–3908.
(9) Dhillon, N.; Aggarwal, B. B.; Newman, R. A.; Wolff, R. A.;
Kunnumakkara, A. B.; Abbruzzese, J. L.; Ng, C. S.; Badmaev, V.;
Kurzrock, R. Phase II trial of curcumin in patients with advanced
pancreatic cancer. Clin. Cancer. Res. 2008, 14, 4491–4499.
(10) Aggarwal, B. B.; Sung, B. Pharmacological basis for the role of
curcumin in chronic diseases: an age-old spice with modern targets.
Trends Pharmacol. Sci. 2009, 30, 85–94.
(32) L€owe, J.; Li, H.; Downing, K. H.; Nogales, E. Refined structure of
alpha beta-tubulin at 3.5 Å resolution. J. Mol. Biol. 2001, 313, 1045–1057.
(33) Dorlꢀeans, A.; Gigant, B.; Ravelli, R. B.; Mailliet, P.; Mikol, V.;
Knossow, M. Variations in the colchicine-binding domain provide
insight into the structural switch of tubulin. Proc. Natl. Acad. Sci. U.S.A.
2009, 106, 13775–13779.
(34) Jackman, R. W.; Rhoads, M. G.; Cornwell, E.; Kandarian, S. C.
Microtubule-mediated NF-kappaB activation in the TNF-alpha signal-
ing pathway. Exp. Cell. Res. 2009, 315, 3242–3249.
(11) Goel, A.; Kunnumakkara, A. B.; Aggarwal, B. B. Curcumin as
“Curecumin”: from kitchen to clinic. Biochem. Pharmacol. 2008,
75, 787–809.
(12) Kawamori, T.; Lubet, R.; Steele, V. E.; Kelloff, G. J.; Kaskey,
R. B.; Rao, C. V.; Reddy, B. S. Chemopreventive effect of curcumin, a
naturally occurring antiinflammatory agent, during the promotion/
progression stages of colon cancer. Cancer. Res. 1999, 59, 597–601.
(13) Mackenzie, G. G.; Queisser, N.; Wolfson, M. L.; Fraga, C. G.;
Adamo, A. M.; Oteiza, P. I. Curcumin induces cell-arrest and apoptosis
6195
dx.doi.org/10.1021/jm2004046 |J. Med. Chem. 2011, 54, 6183–6196